4 resultados para implicit conclusion
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
The humans process the numbers in a similar way to animals. There are countless studies in which similar performance between animals and humans (adults and/or children) are reported. Three models have been developed to explain the cognitive mechanisms underlying the number processing. The triple-code model (Dehaene, 1992) posits an mental number line as preferred way to represent magnitude. The mental number line has three particular effects: the distance, the magnitude and the SNARC effects. The SNARC effect shows a spatial association between number and space representations. In other words, the small numbers are related to left space while large numbers are related to right space. Recently a vertical SNARC effect has been found (Ito & Hatta, 2004; Schwarz & Keus, 2004), reflecting a space-related bottom-to-up representation of numbers. The magnitude representations horizontally and vertically could influence the subject performance in explicit and implicit digit tasks. The goal of this research project aimed to investigate the spatial components of number representation using different experimental designs and tasks. The experiment 1 focused on horizontal and vertical number representations in a within- and between-subjects designs in a parity and magnitude comparative tasks, presenting positive or negative Arabic digits (1-9 without 5). The experiment 1A replied the SNARC and distance effects in both spatial arrangements. The experiment 1B showed an horizontal reversed SNARC effect in both tasks while a vertical reversed SNARC effect was found only in comparative task. In the experiment 1C two groups of subjects performed both tasks in two different instruction-responding hand assignments with positive numbers. The results did not show any significant differences between two assignments, even if the vertical number line seemed to be more flexible respect to horizontal one. On the whole the experiment 1 seemed to demonstrate a contextual (i.e. task set) influences of the nature of the SNARC effect. The experiment 2 focused on the effect of horizontal and vertical number representations on spatial biases in a paper-and-pencil bisecting tasks. In the experiment 2A the participants were requested to bisect physical and number (2 or 9) lines horizontally and vertically. The findings demonstrated that digit 9 strings tended to generate a more rightward bias comparing with digit 2 strings horizontally. However in vertical condition the digit 2 strings generated a more upperward bias respect to digit 9 strings, suggesting a top-to-bottom number line. In the experiment 2B the participants were asked to bisect lines flanked by numbers (i.e. 1 or 7) in four spatial arrangements: horizontal, vertical, right-diagonal and left-diagonal lines. Four number conditions were created according to congruent or incongruent number line representation: 1-1, 1-7, 7-1 and 7-7. The main results showed a more reliable rightward bias in horizontal congruent condition (1-7) respect to incongruent condition (7-1). Vertically the incongruent condition (1-7) determined a significant bias towards bottom side of line respect to congruent condition (7-1). The experiment 2 suggested a more rigid horizontal number line while in vertical condition the number representation could be more flexible. In the experiment 3 we adopted the materials of experiment 2B in order to find a number line effect on temporal (motor) performance. The participants were presented horizontal, vertical, rightdiagonal and left-diagonal lines flanked by the same digits (i.e. 1-1 or 7-7) or by different digits (i.e. 1-7 or 7-1). The digits were spatially congruent or incongruent with their respective hypothesized mental representations. Participants were instructed to touch the lines either close to the large digit, or close to the small digit, or to bisected the lines. Number processing influenced movement execution more than movement planning. Number congruency influenced spatial biases mostly along the horizontal but also along the vertical dimension. These results support a two-dimensional magnitude representation. Finally, the experiment 4 addressed the visuo-spatial manipulation of number representations for accessing and retrieval arithmetic facts. The participants were requested to perform a number-matching and an addition verification tasks. The findings showed an interference effect between sum-nodes and neutral-nodes only with an horizontal presentation of digit-cues, in number-matching tasks. In the addition verification task, the performance was similar for horizontal and vertical presentations of arithmetic problems. In conclusion the data seemed to show an automatic activation of horizontal number line also used to retrieval arithmetic facts. The horizontal number line seemed to be more rigid and the preferred way to order number from left-to-right. A possible explanation could be the left-to-right direction for reading and writing. The vertical number line seemed to be more flexible and more dependent from the tasks, reflecting perhaps several example in the environment representing numbers either from bottom-to-top or from top-to-bottom. However the bottom-to-top number line seemed to be activated by explicit task demands.
Resumo:
The thesis applies the ICC tecniques to the probabilistic polinomial complexity classes in order to get an implicit characterization of them. The main contribution lays on the implicit characterization of PP (which stands for Probabilistic Polynomial Time) class, showing a syntactical characterisation of PP and a static complexity analyser able to recognise if an imperative program computes in Probabilistic Polynomial Time. The thesis is divided in two parts. The first part focuses on solving the problem by creating a prototype of functional language (a probabilistic variation of lambda calculus with bounded recursion) that is sound and complete respect to Probabilistic Prolynomial Time. The second part, instead, reverses the problem and develops a feasible way to verify if a program, written with a prototype of imperative programming language, is running in Probabilistic polynomial time or not. This thesis would characterise itself as one of the first step for Implicit Computational Complexity over probabilistic classes. There are still open hard problem to investigate and try to solve. There are a lot of theoretical aspects strongly connected with these topics and I expect that in the future there will be wide attention to ICC and probabilistic classes.
Resumo:
The Curry-Howard isomorphism is the idea that proofs in natural deduction can be put in correspondence with lambda terms in such a way that this correspondence is preserved by normalization. The concept can be extended from Intuitionistic Logic to other systems, such as Linear Logic. One of the nice conseguences of this isomorphism is that we can reason about functional programs with formal tools which are typical of proof systems: such analysis can also include quantitative qualities of programs, such as the number of steps it takes to terminate. Another is the possiblity to describe the execution of these programs in terms of abstract machines. In 1990 Griffin proved that the correspondence can be extended to Classical Logic and control operators. That is, Classical Logic adds the possiblity to manipulate continuations. In this thesis we see how the things we described above work in this larger context.
Resumo:
In this thesis we provide a characterization of probabilistic computation in itself, from a recursion-theoretical perspective, without reducing it to deterministic computation. More specifically, we show that probabilistic computable functions, i.e., those functions which are computed by Probabilistic Turing Machines (PTM), can be characterized by a natural generalization of Kleene's partial recursive functions which includes, among initial functions, one that returns identity or successor with probability 1/2. We then prove the equi-expressivity of the obtained algebra and the class of functions computed by PTMs. In the the second part of the thesis we investigate the relations existing between our recursion-theoretical framework and sub-recursive classes, in the spirit of Implicit Computational Complexity. More precisely, endowing predicative recurrence with a random base function is proved to lead to a characterization of polynomial-time computable probabilistic functions.