2 resultados para implications where Commissioner of Taxation a party to proceedings

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The growing ecological awareness of Ocean Sprawl impacts is promoting the adoption of eco-engineering strategies to enhance the ecological performance of coastal infrastructures. Biomimicry, as an eco-engineering tool, aims to design infrastructure more suitable for wildlife by manipulating structural factors to mimic natural habitats. However, little is known about the extent to which natural and artificial substrates differ in their structure and to what extent such differences affect the biota. To fill these knowledge gaps and consequently design biomimetic surfaces, I initially explored how much physical structure diverges between various types of natural and artificial substrates and tested to what extent differences in physical structure and material composition affect the epibenthic communities. By mean of an in-field mensurative experiment and a systematic review coupled with a meta-analysis, I found that, although communities tended to differ between natural and artificial coastal habitats, both physical structure and material composition reported an overall mild effect on epibenthic communities. However, an informed choice of building material and an appropriate combination of multiple structural manipulations can promote ecological benefits at multiple levels, from increasing the ecological performance in situ to reducing the impacts during the production process. Thus, I combined my findings in a final experiment, still in progress, where I am testing the combined role of shape, brightness and inclination of biomimetic surfaces I have designed in producing benefits at multiple levels. Overall, I suggest that biomimicry has the potential to increase the ecological value of artificial habitats especially when a wide range of aspects is simultaneously considered. Indeed, none of the structural factors, individually, can fully mimic the “natural conditions” to effectively improve the ecological performance of the artificial substrates. This emphasizes the need to include in future works a multi-level perspective to fully achieve the great potential of biomimicry.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Historical evidence shows that chemical, process, and Oil&Gas facilities where dangerous substances are stored or handled are target of deliberate malicious attacks (security attacks) aiming at interfering with normal operations. Physical attacks and cyber-attacks may generate events with consequences on people, property, and the surrounding environment that are comparable to those of major accidents caused by safety-related causes. The security aspects of these facilities are commonly addressed using Security Vulnerability/Risk Assessment (SVA/SRA) methodologies. Most of these methodologies are semi-quantitative and non-systematic approaches that strongly rely on expert judgment, leading to security assessments that are not reproducible. Moreover, they do not consider the synergies with the safety domain. The present 3-year research is aimed at filling the gap outlined by providing knowledge on security attacks, as well as rigorous and systematic methods supporting existing SVA/SRA studies suitable for the chemical, process, and Oil&Gas industry. The different nature of cyber and physical attacks resulted in the development of different methods for the two domains. The first part of the research was devoted to the development and statistical analysis of security databases that allowed to develop new knowledge and lessons learnt on security threats. Based on the obtained background, a Bow-Tie based procedure and two reverse-HazOp based methodologies were developed as hazard identification approaches for physical and cyber threats respectively. To support the quantitative estimation of the security risk, a quantitative procedure based on the Bayesian Network was developed allowing to calculate the probability of success of physical security attacks. All the developed methods have been applied to case studies addressing chemical, process and Oil&Gas facilities (offshore and onshore) proving the quality of the results that can be achieved in improving site security. Furthermore, the outcomes achieved allow to step forward in developing synergies and promoting integration among safety and security management.