11 resultados para implementation and complexity theory
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
Most electronic systems can be described in a very simplified way as an assemblage of analog and digital components put all together in order to perform a certain function. Nowadays, there is an increasing tendency to reduce the analog components, and to replace them by operations performed in the digital domain. This tendency has led to the emergence of new electronic systems that are more flexible, cheaper and robust. However, no matter the amount of digital process implemented, there will be always an analog part to be sorted out and thus, the step of converting digital signals into analog signals and vice versa cannot be avoided. This conversion can be more or less complex depending on the characteristics of the signals. Thus, even if it is desirable to replace functions carried out by analog components by digital processes, it is equally important to do so in a way that simplifies the conversion from digital to analog signals and vice versa. In the present thesis, we have study strategies based on increasing the amount of processing in the digital domain in such a way that the implementation of analog hardware stages can be simplified. To this aim, we have proposed the use of very low quantized signals, i.e. 1-bit, for the acquisition and for the generation of particular classes of signals.
Resumo:
This thesis presents the outcomes of a Ph.D. course in telecommunications engineering. It is focused on the optimization of the physical layer of digital communication systems and it provides innovations for both multi- and single-carrier systems. For the former type we have first addressed the problem of the capacity in presence of several nuisances. Moreover, we have extended the concept of Single Frequency Network to the satellite scenario, and then we have introduced a novel concept in subcarrier data mapping, resulting in a very low PAPR of the OFDM signal. For single carrier systems we have proposed a method to optimize constellation design in presence of a strong distortion, such as the non linear distortion provided by satellites' on board high power amplifier, then we developed a method to calculate the bit/symbol error rate related to a given constellation, achieving an improved accuracy with respect to the traditional Union Bound with no additional complexity. Finally we have designed a low complexity SNR estimator, which saves one-half of multiplication with respect to the ML estimator, and it has similar estimation accuracy.
Resumo:
Broad consensus has been reached within the Education and Cognitive Psychology research communities on the need to center the learning process on experimentation and concrete application of knowledge, rather than on a bare transfer of notions. Several advantages arise from this educational approach, ranging from the reinforce of students learning, to the increased opportunity for a student to gain greater insight into the studied topics, up to the possibility for learners to acquire practical skills and long-lasting proficiency. This is especially true in Engineering education, where integrating conceptual knowledge and practical skills assumes a strategic importance. In this scenario, learners are called to play a primary role. They are actively involved in the construction of their own knowledge, instead of passively receiving it. As a result, traditional, teacher-centered learning environments should be replaced by novel learner-centered solutions. Information and Communication Technologies enable the development of innovative solutions that provide suitable answers to the need for the availability of experimentation supports in educational context. Virtual Laboratories, Adaptive Web-Based Educational Systems and Computer-Supported Collaborative Learning environments can significantly foster different learner-centered instructional strategies, offering the opportunity to enhance personalization, individualization and cooperation. More specifically, they allow students to explore different kinds of materials, to access and compare several information sources, to face real or realistic problems and to work on authentic and multi-facet case studies. In addition, they encourage cooperation among peers and provide support through coached and scaffolded activities aimed at fostering reflection and meta-cognitive reasoning. This dissertation will guide readers within this research field, presenting both the theoretical and applicative results of a research aimed at designing an open, flexible, learner-centered virtual lab for supporting students in learning Information Security.
Resumo:
This thesis presents some different techniques designed to drive a swarm of robots in an a-priori unknown environment in order to move the group from a starting area to a final one avoiding obstacles. The presented techniques are based on two different theories used alone or in combination: Swarm Intelligence (SI) and Graph Theory. Both theories are based on the study of interactions between different entities (also called agents or units) in Multi- Agent Systems (MAS). The first one belongs to the Artificial Intelligence context and the second one to the Distributed Systems context. These theories, each one from its own point of view, exploit the emergent behaviour that comes from the interactive work of the entities, in order to achieve a common goal. The features of flexibility and adaptability of the swarm have been exploited with the aim to overcome and to minimize difficulties and problems that can affect one or more units of the group, having minimal impact to the whole group and to the common main target. Another aim of this work is to show the importance of the information shared between the units of the group, such as the communication topology, because it helps to maintain the environmental information, detected by each single agent, updated among the swarm. Swarm Intelligence has been applied to the presented technique, through the Particle Swarm Optimization algorithm (PSO), taking advantage of its features as a navigation system. The Graph Theory has been applied by exploiting Consensus and the application of the agreement protocol with the aim to maintain the units in a desired and controlled formation. This approach has been followed in order to conserve the power of PSO and to control part of its random behaviour with a distributed control algorithm like Consensus.
Resumo:
Since the turn of the century, fisheries have maintained a steady growth rate, while aquaculture has experienced a more rapid expansion. Aquaculture can offer EU consumers more diverse, healthy, and sustainable food options, some of which are more popular elsewhere. To develop the sector, the EU is investing heavily. The EU supports innovative projects that promote the sustainable development of seafood sectors and food security. Priority 3 promotes sector development through innovation dissemination. This doctoral dissertation examined innovation transfer in the Italian aquaculture sector, specifically the adoption of innovative tools, using a theoretical model to better understand the complexity of these processes. The work focused on innovation adoption, emphasising that it is the end of a well-defined process. The Awareness Knowledge Adoption Implementation Effectiveness (AKAIE) model was created to better analyse post-adoption phases and evaluate technology adoption implementation and impact. To identify AKAIE drivers and barriers, aquaculture actors were consulted. "Perceived complexity"—barriers to adoption that are strongly influenced by contextual factors—has been used to examine their perspectives (i.e. socio-economic, institutional, cultural ones). The new model will contextualise the sequence based on technologies, entrepreneur traits, corporate and institutional contexts, and complexity perception, the sequence's central node. Technology adoption can also be studied by examining complexity perceptions along the AKAIE sequence. This study proposes a new model to evaluate the diffusion of a given technology, offering the policy maker the possibility to be able to act promptly across the process. The development of responsible policies for evaluating the effectiveness of innovation is more necessary than ever, especially to orient strategies and interventions in the face of major scenarios of change.
Resumo:
The ever-increasing spread of automation in industry puts the electrical engineer in a central role as a promoter of technological development in a sector such as the use of electricity, which is the basis of all the machinery and productive processes. Moreover the spread of drives for motor control and static converters with structures ever more complex, places the electrical engineer to face new challenges whose solution has as critical elements in the implementation of digital control techniques with the requirements of inexpensiveness and efficiency of the final product. The successfully application of solutions using non-conventional static converters awake an increasing interest in science and industry due to the promising opportunities. However, in the same time, new problems emerge whose solution is still under study and debate in the scientific community During the Ph.D. course several themes have been developed that, while obtaining the recent and growing interest of scientific community, have much space for the development of research activity and for industrial applications. The first area of research is related to the control of three phase induction motors with high dynamic performance and the sensorless control in the high speed range. The management of the operation of induction machine without position or speed sensors awakes interest in the industrial world due to the increased reliability and robustness of this solution combined with a lower cost of production and purchase of this technology compared to the others available in the market. During this dissertation control techniques will be proposed which are able to exploit the total dc link voltage and at the same time capable to exploit the maximum torque capability in whole speed range with good dynamic performance. The proposed solution preserves the simplicity of tuning of the regulators. Furthermore, in order to validate the effectiveness of presented solution, it is assessed in terms of performance and complexity and compared to two other algorithm presented in literature. The feasibility of the proposed algorithm is also tested on induction motor drive fed by a matrix converter. Another important research area is connected to the development of technology for vehicular applications. In this field the dynamic performances and the low power consumption is one of most important goals for an effective algorithm. Towards this direction, a control scheme for induction motor that integrates within a coherent solution some of the features that are commonly required to an electric vehicle drive is presented. The main features of the proposed control scheme are the capability to exploit the maximum torque in the whole speed range, a weak dependence on the motor parameters, a good robustness against the variations of the dc-link voltage and, whenever possible, the maximum efficiency. The second part of this dissertation is dedicated to the multi-phase systems. This technology, in fact, is characterized by a number of issues worthy of investigation that make it competitive with other technologies already on the market. Multiphase systems, allow to redistribute power at a higher number of phases, thus making possible the construction of electronic converters which otherwise would be very difficult to achieve due to the limits of present power electronics. Multiphase drives have an intrinsic reliability given by the possibility that a fault of a phase, caused by the possible failure of a component of the converter, can be solved without inefficiency of the machine or application of a pulsating torque. The control of the magnetic field spatial harmonics in the air-gap with order higher than one allows to reduce torque noise and to obtain high torque density motor and multi-motor applications. In one of the next chapters a control scheme able to increase the motor torque by adding a third harmonic component to the air-gap magnetic field will be presented. Above the base speed the control system reduces the motor flux in such a way to ensure the maximum torque capability. The presented analysis considers the drive constrains and shows how these limits modify the motor performance. The multi-motor applications are described by a well-defined number of multiphase machines, having series connected stator windings, with an opportune permutation of the phases these machines can be independently controlled with a single multi-phase inverter. In this dissertation this solution will be presented and an electric drive consisting of two five-phase PM tubular actuators fed by a single five-phase inverter will be presented. Finally the modulation strategies for a multi-phase inverter will be illustrated. The problem of the space vector modulation of multiphase inverters with an odd number of phases is solved in different way. An algorithmic approach and a look-up table solution will be proposed. The inverter output voltage capability will be investigated, showing that the proposed modulation strategy is able to fully exploit the dc input voltage either in sinusoidal or non-sinusoidal operating conditions. All this aspects are considered in the next chapters. In particular, Chapter 1 summarizes the mathematical model of induction motor. The Chapter 2 is a brief state of art on three-phase inverter. Chapter 3 proposes a stator flux vector control for a three- phase induction machine and compares this solution with two other algorithms presented in literature. Furthermore, in the same chapter, a complete electric drive based on matrix converter is presented. In Chapter 4 a control strategy suitable for electric vehicles is illustrated. Chapter 5 describes the mathematical model of multi-phase induction machines whereas chapter 6 analyzes the multi-phase inverter and its modulation strategies. Chapter 7 discusses the minimization of the power losses in IGBT multi-phase inverters with carrier-based pulse width modulation. In Chapter 8 an extended stator flux vector control for a seven-phase induction motor is presented. Chapter 9 concerns the high torque density applications and in Chapter 10 different fault tolerant control strategies are analyzed. Finally, the last chapter presents a positioning multi-motor drive consisting of two PM tubular five-phase actuators fed by a single five-phase inverter.
Resumo:
The thesis deals with channel coding theory applied to upper layers in the protocol stack of a communication link and it is the outcome of four year research activity. A specific aspect of this activity has been the continuous interaction between the natural curiosity related to the academic blue-sky research and the system oriented design deriving from the collaboration with European industry in the framework of European funded research projects. In this dissertation, the classical channel coding techniques, that are traditionally applied at physical layer, find their application at upper layers where the encoding units (symbols) are packets of bits and not just single bits, thus explaining why such upper layer coding techniques are usually referred to as packet layer coding. The rationale behind the adoption of packet layer techniques is in that physical layer channel coding is a suitable countermeasure to cope with small-scale fading, while it is less efficient against large-scale fading. This is mainly due to the limitation of the time diversity inherent in the necessity of adopting a physical layer interleaver of a reasonable size so as to avoid increasing the modem complexity and the latency of all services. Packet layer techniques, thanks to the longer codeword duration (each codeword is composed of several packets of bits), have an intrinsic longer protection against long fading events. Furthermore, being they are implemented at upper layer, Packet layer techniques have the indisputable advantages of simpler implementations (very close to software implementation) and of a selective applicability to different services, thus enabling a better matching with the service requirements (e.g. latency constraints). Packet coding technique improvement has been largely recognized in the recent communication standards as a viable and efficient coding solution: Digital Video Broadcasting standards, like DVB-H, DVB-SH, and DVB-RCS mobile, and 3GPP standards (MBMS) employ packet coding techniques working at layers higher than the physical one. In this framework, the aim of the research work has been the study of the state-of-the-art coding techniques working at upper layer, the performance evaluation of these techniques in realistic propagation scenario, and the design of new coding schemes for upper layer applications. After a review of the most important packet layer codes, i.e. Reed Solomon, LDPC and Fountain codes, in the thesis focus our attention on the performance evaluation of ideal codes (i.e. Maximum Distance Separable codes) working at UL. In particular, we analyze the performance of UL-FEC techniques in Land Mobile Satellite channels. We derive an analytical framework which is a useful tool for system design allowing to foresee the performance of the upper layer decoder. We also analyze a system in which upper layer and physical layer codes work together, and we derive the optimal splitting of redundancy when a frequency non-selective slowly varying fading channel is taken into account. The whole analysis is supported and validated through computer simulation. In the last part of the dissertation, we propose LDPC Convolutional Codes (LDPCCC) as possible coding scheme for future UL-FEC application. Since one of the main drawbacks related to the adoption of packet layer codes is the large decoding latency, we introduce a latency-constrained decoder for LDPCCC (called windowed erasure decoder). We analyze the performance of the state-of-the-art LDPCCC when our decoder is adopted. Finally, we propose a design rule which allows to trade-off performance and latency.
Resumo:
Interactive theorem provers are tools designed for the certification of formal proofs developed by means of man-machine collaboration. Formal proofs obtained in this way cover a large variety of logical theories, ranging from the branches of mainstream mathematics, to the field of software verification. The border between these two worlds is marked by results in theoretical computer science and proofs related to the metatheory of programming languages. This last field, which is an obvious application of interactive theorem proving, poses nonetheless a serious challenge to the users of such tools, due both to the particularly structured way in which these proofs are constructed, and to difficulties related to the management of notions typical of programming languages like variable binding. This thesis is composed of two parts, discussing our experience in the development of the Matita interactive theorem prover and its use in the mechanization of the metatheory of programming languages. More specifically, part I covers: - the results of our effort in providing a better framework for the development of tactics for Matita, in order to make their implementation and debugging easier, also resulting in a much clearer code; - a discussion of the implementation of two tactics, providing infrastructure for the unification of constructor forms and the inversion of inductive predicates; we point out interactions between induction and inversion and provide an advancement over the state of the art. In the second part of the thesis, we focus on aspects related to the formalization of programming languages. We describe two works of ours: - a discussion of basic issues we encountered in our formalizations of part 1A of the Poplmark challenge, where we apply the extended inversion principles we implemented for Matita; - a formalization of an algebraic logical framework, posing more complex challenges, including multiple binding and a form of hereditary substitution; this work adopts, for the encoding of binding, an extension of Masahiko Sato's canonical locally named representation we designed during our visit to the Laboratory for Foundations of Computer Science at the University of Edinburgh, under the supervision of Randy Pollack.
Resumo:
A Plasma Focus device can confine in a small region a plasma generated during the pinch phase. When the plasma is in the pinch condition it creates an environment that produces several kinds of radiations. When the filling gas is nitrogen, a self-collimated backwardly emitted electron beam, slightly spread by the coulomb repulsion, can be considered one of the most interesting outputs. That beam can be converted into X-ray pulses able to transfer energy at an Ultra-High Dose-Rate (UH-DR), up to 1 Gy pulse-1, for clinical applications, research, or industrial purposes. The radiation fields have been studied with the PFMA-3 hosted at the University of Bologna, finding the radiation behavior at different operating conditions and working parameters for a proper tuning of this class of devices in clinical applications. The experimental outcomes have been compared with available analytical formalisms as benchmark and the scaling laws have been proposed. A set of Monte Carlo models have been built with direct and adjoint techniques for an accurate X-ray source characterization and for setting fast and reliable irradiation planning for patients. By coupling deterministic and Monte Carlo codes, a focusing lens for the charged particles has been designed for obtaining a beam suitable for applications as external radiotherapy or intra-operative radiation therapy. The radiobiological effectiveness of the UH PF DR, a FLASH source, has been evaluated by coupling different Monte Carlo codes estimating the overall level of DNA damage at the multi-cellular and tissue levels by considering the spatial variation effects as well as the radiation field characteristics. The numerical results have been correlated to the experimental outcomes. Finally, ambient dose measurements have been performed for tuning the numerical models and obtaining doses for radiation protection purposes. The PFMA-3 technology has been fully characterized toward clinical implementation and installation in a medical facility.
Resumo:
The present Ph.D. thesis proposes three studies on coworking spaces to understand how they foster thriving and organizing in the new world of work. The first study maps and analyzes the thematic structure and evolution of the academic debate that has emerged around coworking spaces in recent years. In doing so, it conducts a science mapping analysis of 351 publications on coworking spaces to detect and visualize key themes in the literature and their co-occurrence with subthemes. The second study proposes an interpretive review of 98 publications from multiple disciplines to shed light on how coworking spaces emerge as sites of organizing for professionals who are not formally connected to one another. It suggests five dimensions that articulate coworking spaces as sites of organizing – ‘materiality,’ ‘temporality,’ ‘affect,’ ‘identity,’ and ‘formalization.’ This study aims to go beyond the community-related understanding of coworking that has characterized most scholarly attention, instead focusing on coworking spaces’ organizational character. The third study investigates what drives thriving at work for remote workers in coworking spaces. In doing so, it acknowledges the potential complex set of interrelationships underpinning thriving at work and mobilizes complexity theory and qualitative comparative analysis to uncover six different, yet equifinal, configurations of antecedents driving remote workers’ thriving in coworking spaces.