4 resultados para image texture analysis

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Perfusion CT imaging of the liver has potential to improve evaluation of tumour angiogenesis. Quantitative parameters can be obtained applying mathematical models to Time Attenuation Curve (TAC). However, there are still some difficulties for an accurate quantification of perfusion parameters due, for example, to algorithms employed, to mathematical model, to patient’s weight and cardiac output and to the acquisition system. In this thesis, new parameters and alternative methodologies about liver perfusion CT are presented in order to investigate the cause of variability of this technique. Firstly analysis were made to assess the variability related to the mathematical model used to compute arterial Blood Flow (BFa) values. Results were obtained implementing algorithms based on “ maximum slope method” and “Dual input one compartment model” . Statistical analysis on simulated data demonstrated that the two methods are not interchangeable. Anyway slope method is always applicable in clinical context. Then variability related to TAC processing in the application of slope method is analyzed. Results compared with manual selection allow to identify the best automatic algorithm to compute BFa. The consistency of a Standardized Perfusion Index (SPV) was evaluated and a simplified calibration procedure was proposed. At the end the quantitative value of perfusion map was analyzed. ROI approach and map approach provide related values of BFa and this means that pixel by pixel algorithm give reliable quantitative results. Also in pixel by pixel approach slope method give better results. In conclusion the development of new automatic algorithms for a consistent computation of BFa and the analysis and definition of simplified technique to compute SPV parameter, represent an improvement in the field of liver perfusion CT analysis.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The subject of this doctoral dissertation concerns the definition of a new methodology for the morphological and morphometric study of fossilized human teeth, and therefore strives to provide a contribution to the reconstruction of human evolutionary history that proposes to extend to the different species of hominid fossils. Standardized investigative methodologies are lacking both regarding the orientation of teeth subject to study and in the analysis that can be carried out on these teeth once they are oriented. The opportunity to standardize a primary analysis methodology is furnished by the study of certain early Neanderthal and preneanderthal molars recovered in two caves in southern Italy [Grotta Taddeo (Taddeo Cave) and Grotta del Poggio (Poggio Cave), near Marina di Camerata, Campania]. To these we can add other molars of Neanderthal and modern man of the upper Paleolithic era, specifically scanned in the paleoanthropology laboratory of the University of Arkansas (Fayetteville, Arkansas, USA), in order to increase the paleoanthropological sample data and thereby make the final results of the analyses more significant. The new analysis methodology is rendered as follows: 1. Standardization of an orientation system for primary molars (superior and inferior), starting from a scan of a sample of 30 molars belonging to modern man (15 M1 inferior and 15 M1 superior), the definition of landmarks, the comparison of various systems and the choice of a system of orientation for each of the two dental typologies. 2. The definition of an analysis procedure that considers only the first 4 millimeters of the dental crown starting from the collar: 5 sections parallel to the plane according to which the tooth has been oriented are carried out, spaced 1 millimeter between them. The intention is to determine a method that allows for the differentiation of fossilized species even in the presence of worn teeth. 3. Results and Conclusions. The new approach to the study of teeth provides a considerable quantity of information that can better be evaluated by increasing the fossil sample data. It has been demonstrated to be a valid tool in evolutionary classification that has allowed (us) to differentiate the Neanderthal sample from that of modern man. In a particular sense the molars of Grotta Taddeo, which up until this point it has not been possible to determine with exactness their species of origin, through the present research they are classified as Neanderthal.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

During the last few years, several methods have been proposed in order to study and to evaluate characteristic properties of the human skin by using non-invasive approaches. Mostly, these methods cover aspects related to either dermatology, to analyze skin physiology and to evaluate the effectiveness of medical treatments in skin diseases, or dermocosmetics and cosmetic science to evaluate, for example, the effectiveness of anti-aging treatments. To these purposes a routine approach must be followed. Although very accurate and high resolution measurements can be achieved by using conventional methods, such as optical or mechanical profilometry for example, their use is quite limited primarily to the high cost of the instrumentation required, which in turn is usually cumbersome, highlighting some of the limitations for a routine based analysis. This thesis aims to investigate the feasibility of a noninvasive skin characterization system based on the analysis of capacitive images of the skin surface. The system relies on a CMOS portable capacitive device which gives 50 micron/pixel resolution capacitance map of the skin micro-relief. In order to extract characteristic features of the skin topography, image analysis techniques, such as watershed segmentation and wavelet analysis, have been used to detect the main structures of interest: wrinkles and plateau of the typical micro-relief pattern. In order to validate the method, the features extracted from a dataset of skin capacitive images acquired during dermatological examinations of a healthy group of volunteers have been compared with the age of the subjects involved, showing good correlation with the skin ageing effect. Detailed analysis of the output of the capacitive sensor compared with optical profilometry of silicone replica of the same skin area has revealed potentiality and some limitations of this technology. Also, applications to follow-up studies, as needed to objectively evaluate the effectiveness of treatments in a routine manner, are discussed.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This thesis investigates two distinct research topics. The main topic (Part I) is the computational modelling of cardiomyocytes derived from human stem cells, both embryonic (hESC-CM) and induced-pluripotent (hiPSC-CM). The aim of this research line lies in developing models of the electrophysiology of hESC-CM and hiPSC-CM in order to integrate the available experimental data and getting in-silico models to be used for studying/making new hypotheses/planning experiments on aspects not fully understood yet, such as the maturation process, the functionality of the Ca2+ hangling or why the hESC-CM/hiPSC-CM action potentials (APs) show some differences with respect to APs from adult cardiomyocytes. Chapter I.1 introduces the main concepts about hESC-CMs/hiPSC-CMs, the cardiac AP, and computational modelling. Chapter I.2 presents the hESC-CM AP model, able to simulate the maturation process through two developmental stages, Early and Late, based on experimental and literature data. Chapter I.3 describes the hiPSC-CM AP model, able to simulate the ventricular-like and atrial-like phenotypes. This model was used to assess which currents are responsible for the differences between the ventricular-like AP and the adult ventricular AP. The secondary topic (Part II) consists in the study of texture descriptors for biological image processing. Chapter II.1 provides an overview on important texture descriptors such as Local Binary Pattern or Local Phase Quantization. Moreover the non-binary coding and the multi-threshold approach are here introduced. Chapter II.2 shows that the non-binary coding and the multi-threshold approach improve the classification performance of cellular/sub-cellular part images, taken from six datasets. Chapter II.3 describes the case study of the classification of indirect immunofluorescence images of HEp2 cells, used for the antinuclear antibody clinical test. Finally the general conclusions are reported.