3 resultados para image recognition
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
An extensive study of the morphology and the dynamics of the equatorial ionosphere over South America is presented here. A multi parametric approach is used to describe the physical characteristics of the ionosphere in the regions where the combination of the thermospheric electric field and the horizontal geomagnetic field creates the so-called Equatorial Ionization Anomalies. Ground based measurements from GNSS receivers are used to link the Total Electron Content (TEC), its spatial gradients and the phenomenon known as scintillation that can lead to a GNSS signal degradation or even to a GNSS signal ‘loss of lock’. A new algorithm to highlight the features characterizing the TEC distribution is developed in the framework of this thesis and the results obtained are validated and used to improve the performance of a GNSS positioning technique (long baseline RTK). In addition, the correlation between scintillation and dynamics of the ionospheric irregularities is investigated. By means of a software, here implemented, the velocity of the ionospheric irregularities is evaluated using high sampling rate GNSS measurements. The results highlight the parallel behaviour of the amplitude scintillation index (S4) occurrence and the zonal velocity of the ionospheric irregularities at least during severe scintillations conditions (post-sunset hours). This suggests that scintillations are driven by TEC gradients as well as by the dynamics of the ionospheric plasma. Finally, given the importance of such studies for technological applications (e.g. GNSS high-precision applications), a validation of the NeQuick model (i.e. the model used in the new GALILEO satellites for TEC modelling) is performed. The NeQuick performance dramatically improves when data from HF radar sounding (ionograms) are ingested. A custom designed algorithm, based on the image recognition technique, is developed to properly select the ingested data, leading to further improvement of the NeQuick performance.
Resumo:
Images of a scene, static or dynamic, are generally acquired at different epochs from different viewpoints. They potentially gather information about the whole scene and its relative motion with respect to the acquisition device. Data from different (in the spatial or temporal domain) visual sources can be fused together to provide a unique consistent representation of the whole scene, even recovering the third dimension, permitting a more complete understanding of the scene content. Moreover, the pose of the acquisition device can be achieved by estimating the relative motion parameters linking different views, thus providing localization information for automatic guidance purposes. Image registration is based on the use of pattern recognition techniques to match among corresponding parts of different views of the acquired scene. Depending on hypotheses or prior information about the sensor model, the motion model and/or the scene model, this information can be used to estimate global or local geometrical mapping functions between different images or different parts of them. These mapping functions contain relative motion parameters between the scene and the sensor(s) and can be used to integrate accordingly informations coming from the different sources to build a wider or even augmented representation of the scene. Accordingly, for their scene reconstruction and pose estimation capabilities, nowadays image registration techniques from multiple views are increasingly stirring up the interest of the scientific and industrial community. Depending on the applicative domain, accuracy, robustness, and computational payload of the algorithms represent important issues to be addressed and generally a trade-off among them has to be reached. Moreover, on-line performance is desirable in order to guarantee the direct interaction of the vision device with human actors or control systems. This thesis follows a general research approach to cope with these issues, almost independently from the scene content, under the constraint of rigid motions. This approach has been motivated by the portability to very different domains as a very desirable property to achieve. A general image registration approach suitable for on-line applications has been devised and assessed through two challenging case studies in different applicative domains. The first case study regards scene reconstruction through on-line mosaicing of optical microscopy cell images acquired with non automated equipment, while moving manually the microscope holder. By registering the images the field of view of the microscope can be widened, preserving the resolution while reconstructing the whole cell culture and permitting the microscopist to interactively explore the cell culture. In the second case study, the registration of terrestrial satellite images acquired by a camera integral with the satellite is utilized to estimate its three-dimensional orientation from visual data, for automatic guidance purposes. Critical aspects of these applications are emphasized and the choices adopted are motivated accordingly. Results are discussed in view of promising future developments.
Resumo:
Automatically recognizing faces captured under uncontrolled environments has always been a challenging topic in the past decades. In this work, we investigate cohort score normalization that has been widely used in biometric verification as means to improve the robustness of face recognition under challenging environments. In particular, we introduce cohort score normalization into undersampled face recognition problem. Further, we develop an effective cohort normalization method specifically for the unconstrained face pair matching problem. Extensive experiments conducted on several well known face databases demonstrate the effectiveness of cohort normalization on these challenging scenarios. In addition, to give a proper understanding of cohort behavior, we study the impact of the number and quality of cohort samples on the normalization performance. The experimental results show that bigger cohort set size gives more stable and often better results to a point before the performance saturates. And cohort samples with different quality indeed produce different cohort normalization performance. Recognizing faces gone after alterations is another challenging problem for current face recognition algorithms. Face image alterations can be roughly classified into two categories: unintentional (e.g., geometrics transformations introduced by the acquisition devide) and intentional alterations (e.g., plastic surgery). We study the impact of these alterations on face recognition accuracy. Our results show that state-of-the-art algorithms are able to overcome limited digital alterations but are sensitive to more relevant modifications. Further, we develop two useful descriptors for detecting those alterations which can significantly affect the recognition performance. In the end, we propose to use the Structural Similarity (SSIM) quality map to detect and model variations due to plastic surgeries. Extensive experiments conducted on a plastic surgery face database demonstrate the potential of SSIM map for matching face images after surgeries.