2 resultados para hyperglycaemia
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
In the recent years it is emerged that peripheral arterial disease (PAD) has become a growing health problem in Western countries. This is a progressive manifestation of atherothrombotic vascular disease, which results into the narrowing of the blood vessels of the lower limbs and, as final consequence, in critical leg ischemia. PAD often occurs along with other cardiovascular risk factors, including diabetes mellitus (DM), low-grade inflammation, hypertension, and lipid disorders. Patients with DM have an increased risk of developing PAD, and that risk increases with the duration of DM. Moreover, there is a growing population of patients identified with insulin resistance (IR), impaired glucose tolerance, and obesity, a pathological condition known as “metabolic syndrome”, which presents increased cardiovascular risk. Atherosclerosis is the earliest symptom of PAD and is a dynamic and progressive disease arising from the combination of endothelial dysfunction and inflammation. Endothelial dysfunction is a broad term that implies diminished production or availability of nitric oxide (NO) and/or an imbalance in the relative contribution of endothelium-derived relaxing factors. The secretion of these agents is considerably reduced in association with the major risks of atherosclerosis, especially hyperglycaemia and diabetes, and a reduced vascular repair has been observed in response to wound healing and to ischemia. Neovascularization does not only rely on the proliferation of local endothelial cells, but also involves bone marrow-derived stem cells, referred to as endothelial progenitor cells (EPCs), since they exhibit endothelial surface markers and properties. They can promote postnatal vasculogenesis by homing to, differentiating into an endothelial phenotype, proliferating and incorporating into new vessels. Consequently, EPCs are critical to endothelium maintenance and repair and their dysfunction contributes to vascular disease. The aim of this study has been the characterization of EPCs from healthy peripheral blood, in terms of proliferation, differentiation and function. Given the importance of NO in neovascularization and homing process, it has been investigated the expression of NO synthase (NOS) isoforms, eNOS, nNOS and iNOS, and the effects of their inhibition on EPC function. Moreover, it has been examined the expression of NADPH oxidase (Nox) isoforms which are the principal source of ROS in the cell. In fact, a number of evidences showed the correlation between ROS and NO metabolism, since oxidative stress causes NOS inactivation via enzyme uncoupling. In particular, it has been studied the expression of Nox2 and Nox4, constitutively expressed in endothelium, and Nox1. The second part of this research was focused on the study of EPCs under pathological conditions. Firstly, EPCs isolated from healthy subject were cultured in a hyperglycaemic medium, in order to evaluate the effects of high glucose concentration on EPCs. Secondly, EPCs were isolated from the peripheral blood of patients affected with PAD, both diabetic or not, and it was assessed their capacity to proliferate, differentiate, and to participate to neovasculogenesis. Furthermore, it was investigated the expression of NOS and Nox in these cells. Mononuclear cells isolated from peripheral blood of healthy patients, if cultured under differentiating conditions, differentiate into EPCs. These cells are not able to form capillary-like structures ex novo, but participate to vasculogenesis by incorporation into the new vessels formed by mature endothelial cells, such as HUVECs. With respect to NOS expression, these cells have high levels of iNOS, the inducible isoform of NOS, 3-4 fold higher than in HUVECs. While the endothelial isoform, eNOS, is poorly expressed in EPCs. The higher iNOS expression could be a form of compensation of lower eNOS levels. Under hyperglycaemic conditions, both iNOS and eNOS expression are enhanced compared to control EPCs, as resulted from experimental studies in animal models. In patients affected with PAD, the EPCs may act in different ways. Non-diabetic patients and diabetic patients with a higher vascular damage, evidenced by a higher number of circulating endothelial cells (CECs), show a reduced proliferation and ability to participate to vasculogenesis. On the other hand, diabetic patients with lower CEC number have proliferative and vasculogenic capacity more similar to healthy EPCs. eNOS levels in both patient types are equivalent to those of control, while iNOS expression is enhanced. Interestingly, nNOS is not detected in diabetic patients, analogously to other cell types in diabetics, which show a reduced or no nNOS expression. Concerning Nox expression, EPCs present higher levels of both Nox1 and Nox2, in comparison with HUVECs, while Nox4 is poorly expressed, probably because of uncompleted differentiation into an endothelial phenotype. Nox1 is more expressed in PAD patients, diabetic or not, than in controls, suggesting an increased ROS production. Nox2, instead, is lower in patients than in controls. Being Nox2 involved in cellular response to VEGF, its reduced expression can be referable to impaired vasculogenic potential of PAD patients.
Resumo:
INTRODUCTION – In human medicine, diabetes mellitus (DM), hypertension, proteinuria and nephropathy are often associated although it is still not clear whether hypertension is the consequence or the cause of nephropathy and albuminuria. Microalbuminuria, in humans, is an early and sensitive marker which permits timely and effective therapy in the early phase of renal damage. Conversely, in dogs, these relationships were not fully investigated, even though hypertension has been associated with many diseases (Bodey and Michell, 1996). In a previous study, 20% of diabetic dogs were found proteinuric based on a U:P/C > 1 and 46% were hypertensive; this latter finding is similar to the prevalence of hypertension in diabetic people (40-80%) (Struble et al., 1998). In the same canine study, hypertension was also positively correlated with the duration of the disease, as is the case in human beings. Hypertension was also found to be a common complication of hypercortisolism (HC) in dogs, with a prevalence which varies from 50 (Goy-Thollot et al., 2002) to 80% (Danese and Aron, 1994).The aim of our study was to evaluate the urinary albumin to creatinine ratio (U:A/C) in dogs affected by Diabetes Mellitus and HC in order to ascertain if, as in human beings, it could represent an early and more sensitive marker of renal damage than U:P/C. Furthermore, the relationship between proteinuria and hypertension in DM and HC was also investigated. MATERIALS AND METHODS – Twenty dogs with DM, 14 with HC and 21 healthy dogs (control group) were included in the prospective case-control study. Inclusion criteria were hyperglycaemia, glicosuria and serum fructosamine above the reference range for DM dogs and a positive ACTH stimulation test and/or low-dose dexamethasone test and consistent findings of HC on abdominal ultrasonography in HC dogs. Dogs were excluded if affected by urinary tract infections and if the serum creatinine or urea values were above the reference range. At the moment of inclusion, an appropriate therapy had already been instituted less than 1 month earlier in 12 diabetic dogs. The control dogs were considered healthy based on clinical exam and clinicopathological findings. All dogs underwent urine sample collection by cystocentesis and systemic blood pressure measurement by means of either an oscillometric device (BP-88 Next, Colin Corporation, Japan) or by Doppler ultrasonic traducer (Minidop ES-100VX, Hadeco, Japan). The choice of method depended on the dog’s body weight: Doppler ultrasonography was employed in dogs < 20 kg of body weight and the oscillometric method in the other subjects. Dogs were considered hypertensive whenever systemic blood pressure was found ≥ 160 mmHg. The urine was assayed for U:P/C and U:A/C (Gentilini et al., 2005). The data between groups were compared using the Mann-Whitney U test. The reference ranges for U:P/C and U:A/C had already been established by our laboratory as 0.6 and 0.05, respectively. U:P/C and U:A/C findings were correlated to systemic blood pressure and Spearman R correlation coefficients were calculated. In all cases, p < 0.05 was considered statistically significant. RESULTS – The mean ± sd urinary albumin concentration in the three groups was 1.79 mg/dl ± 2.18; 20.02 mg/dl ± 43.25; 52.02 mg/dl ± 98.27, in healthy, diabetic and hypercortisolemic dogs, respectively. The urine albumin concentration differed significantly between healthy and diabetic dogs (p = 0.008) and between healthy and HC dogs (p = 0.011). U:A/C values ranged from 0.00 to 0.34 (mean ± sd 0.02 ± 0.07), 0.00 to 6.72 (mean ± sd 0.62 ± 1.52) and 0.00 to 5.52 (mean ± sd 1.27 ± 1.70) in the control, DM and HC groups, respectively; U:P/C values ranged from 0.1 to 0.6 (mean ± sd 0.17 ± 0.15) 0.1 to 6.6 (mean ± sd 0.93 ± 1.15) and 0.2 to 7.1 (mean ± sd 1.90 ± 2.11) in the control, DM and HC groups, respectively. In diabetic dogs, U:A/C was above the reference range in 11 out of 20 dogs (55%). Among these, 5/20 (25%) showed an increase only in the U:A/C ratio while, in 6/20 (30%), both the U:P/C and the U:A/C were abnormal. Among the latter, 4 dogs had already undergone therapy. In subjects affected with HC, U:P/C and U:A/C were both increased in 10/14 (71%) while in 2/14 (14%) only U:A/C was above the reference range. Overall, by comparing U:P/C and U:A/C in the various groups, a significant increase in protein excretion in disease-affected animals compared to healthy dogs was found. Blood pressure (BP) in diabetic subjects ranged from 88 to 203 mmHg (mean ± sd 143 ± 33 mmHg) and 7/20 (35%) dogs were found to be hypertensive. In HC dogs, BP ranged from 116 to 200 mmHg (mean ± sd 167 ± 26 mmHg) and 9/14 (64%) dogs were hypertensive. Blood pressure and proteinuria were not significantly correlated. Furthermore, in the DM group, U:P/C and U:A/C were both increased in 3 hypertensive dogs and 2 normotensive dogs while the only increase of U:A/C was observed in 2 hypertensive and 3 normotensive dogs. In the HC group, the U:P/C and the U:A/C were both increased in 6 hypertensive and 2 normotensive dogs; the U:A/C was the sole increased parameter in 1 hypertensive dog and in 1 dog with normal pressure. DISCUSSION AND CONCLUSION- The findings of this study suggest that, in dogs affected by DM and HC, an increase in U:P/C, U:A/C and systemic hypertension is frequently present. Remarkably, some dogs affected by both DM and HC showed an U:A/C but not U:P/C above the reference range. In diabetic dogs, albuminuria was observed in 25% of the subjects, suggesting the possibility that this parameter could be employed for detecting renal damage at an early phase when common semiquantiative tests and even U:P/C fall inside the reference range. In HC dogs, a higher number of subjects with overt proteinuria was found while only 14% presented an increase only in the U:A/C. This fact, associated with a greater number of hypertensive dogs having HC rather than DM, could suggest a greater influence on renal function by the mechanisms involved in hypertension secondary to hypercortisolemia. Furthermore, it is possible that, in HC dogs, the diagnosis was more delayed than in DM dogs. However, the lack of a statistically significant correlation between hypertension and increased protein excretion as well as the apparently random distribution of proteinuric subjects in normotensive and hypertensive cases, imply that other factors besides hypertension are involved in causing proteinuria. Longitudinal studies are needed to further investigate the relationship between hypertension and proteinuria.