3 resultados para hydrogen electrode

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The hydrogen production in the green microalga Chlamydomonas reinhardtii was evaluated by means of a detailed physiological and biotechnological study. First, a wide screening of the hydrogen productivity was done on 22 strains of C. reinhardtii, most of which mutated at the level of the D1 protein. The screening revealed for the first time that mutations upon the D1 protein may result on an increased hydrogen production. Indeed, productions ranged between 0 and more than 500 mL hydrogen per liter of culture (Torzillo, Scoma et al., 2007a), the highest producer (L159I-N230Y) being up to 5 times more performant than the strain cc124 widely adopted in literature (Torzillo, Scoma, et al., 2007b). Improved productivities by D1 protein mutants were generally a result of high photosynthetic capabilities counteracted by high respiration rates. Optimization of culture conditions were addressed according to the results of the physiological study of selected strains. In a first step, the photobioreactor (PBR) was provided with a multiple-impeller stirring system designed, developed and tested by us, using the strain cc124. It was found that the impeller system was effectively able to induce regular and turbulent mixing, which led to improved photosynthetic yields by means of light/dark cycles. Moreover, improved mixing regime sustained higher respiration rates, compared to what obtained with the commonly used stir bar mixing system. As far as the results of the initial screening phase are considered, both these factors are relevant to the hydrogen production. Indeed, very high energy conversion efficiencies (light to hydrogen) were obtained with the impeller device, prooving that our PBR was a good tool to both improve and study photosynthetic processes (Giannelli, Scoma et al., 2009). In the second part of the optimization, an accurate analysis of all the positive features of the high performance strain L159I-N230Y pointed out, respect to the WT, it has: (1) a larger chlorophyll optical cross-section; (2) a higher electron transfer rate by PSII; (3) a higher respiration rate; (4) a higher efficiency of utilization of the hydrogenase; (5) a higher starch synthesis capability; (6) a higher per cell D1 protein amount; (7) a higher zeaxanthin synthesis capability (Torzillo, Scoma et al., 2009). These information were gathered with those obtained with the impeller mixing device to find out the best culture conditions to optimize productivity with strain L159I-N230Y. The main aim was to sustain as long as possible the direct PSII contribution, which leads to hydrogen production without net CO2 release. Finally, an outstanding maximum rate of 11.1 ± 1.0 mL/L/h was reached and maintained for 21.8 ± 7.7 hours, when the effective photochemical efficiency of PSII (ΔF/F'm) underwent a last drop to zero. If expressed in terms of chl (24.0 ± 2.2 µmoles/mg chl/h), these rates of production are 4 times higher than what reported in literature to date (Scoma et al., 2010a submitted). DCMU addition experiments confirmed the key role played by PSII in sustaining such rates. On the other hand, experiments carried out in similar conditions with the control strain cc124 showed an improved final productivity, but no constant PSII direct contribution. These results showed that, aside from fermentation processes, if proper conditions are supplied to selected strains, hydrogen production can be substantially enhanced by means of biophotolysis. A last study on the physiology of the process was carried out with the mutant IL. Although able to express and very efficiently utilize the hydrogenase enzyme, this strain was unable to produce hydrogen when sulfur deprived. However, in a specific set of experiments this goal was finally reached, pointing out that other than (1) a state 1-2 transition of the photosynthetic apparatus, (2) starch storage and (3) anaerobiosis establishment, a timely transition to the hydrogen production is also needed in sulfur deprivation to induce the process before energy reserves are driven towards other processes necessary for the survival of the cell. This information turned out to be crucial when moving outdoor for the hydrogen production in a tubular horizontal 50-liter PBR under sunlight radiation. First attempts with laboratory grown cultures showed that no hydrogen production under sulfur starvation can be induced if a previous adaptation of the culture is not pursued outdoor. Indeed, in these conditions the hydrogen production under direct sunlight radiation with C. reinhardtii was finally achieved for the first time in literature (Scoma et al., 2010b submitted). Experiments were also made to optimize productivity in outdoor conditions, with respect to the light dilution within the culture layers. Finally, a brief study of the anaerobic metabolism of C. reinhardtii during hydrogen oxidation has been carried out. This study represents a good integration to the understanding of the complex interplay of pathways that operate concomitantly in this microalga.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The development of safe, high energy and power electrochemical energy-conversion systems can be a response to the worldwide demand for a clean and low-fuel-consuming transport. This thesis work, starting from a basic studies on the ionic liquid (IL) electrolytes and carbon electrodes and concluding with tests on large-size IL-based supercapacitor prototypes demonstrated that the IL-based asymmetric configuration (AEDLCs) is a powerful strategy to develop safe, high-energy supercapacitors that might compete with lithium-ion batteries in power assist-hybrid electric vehicles (HEVs). The increase of specific energy in EDLCs was achieved following three routes: i) the use of hydrophobic ionic liquids (ILs) as electrolytes; ii) the design and preparation of carbon electrode materials of tailored morphology and surface chemistry to feature high capacitance response in IL and iii) the asymmetric double-layer carbon supercapacitor configuration (AEDLC) which consists of assembling the supercapacitor with different carbon loadings at the two electrodes in order to exploit the wide electrochemical stability window (ESW) of IL and to reach high maximum cell voltage (Vmax). Among the various ILs investigated the N-methoxyethyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide (PYR1(2O1)TFSI) was selected because of its hydrophobicity and high thermal stability up to 350 °C together with good conductivity and wide ESW, exploitable in a wide temperature range, below 0°C. For such exceptional properties PYR1(2O1)TFSI was used for the whole study to develop large size IL-based carbon supercapacitor prototype. This work also highlights that the use of ILs determines different chemical-physical properties at the interface electrode/electrolyte with respect to that formed by conventional electrolytes. Indeed, the absence of solvent in ILs makes the properties of the interface not mediated by the solvent and, thus, the dielectric constant and double-layer thickness strictly depend on the chemistry of the IL ions. The study of carbon electrode materials evidences several factors that have to be taken into account for designing performing carbon electrodes in IL. The heat-treatment in inert atmosphere of the activated carbon AC which gave ACT carbon featuring ca. 100 F/g in IL demonstrated the importance of surface chemistry in the capacitive response of the carbons in hydrophobic ILs. The tailored mesoporosity of the xerogel carbons is a key parameter to achieve high capacitance response. The CO2-treated xerogel carbon X3a featured a high specific capacitance of 120 F/g in PYR14TFSI, however, exhibiting high pore volume, an excess of IL is required to fill the pores with respect to that necessary for the charge-discharge process. Further advances were achieved with electrodes based on the disordered template carbon DTC7 with pore size distribution centred at 2.7 nm which featured a notably high specific capacitance of 140 F/g in PYR14TFSI and a moderate pore volume, V>1.5 nm of 0.70 cm3/g. This thesis work demonstrated that by means of the asymmetric configuration (AEDLC) it was possible to reach high cell voltage up to 3.9 V. Indeed, IL-based AEDLCs with the X3a or ACT carbon electrodes exhibited specific energy and power of ca. 30 Wh/kg and 10 kW/kg, respectively. The DTC7 carbon electrodes, featuring a capacitance response higher of 20%-40% than those of X3a and ACT, respectively, enabled the development of a PYR14TFSI-based AEDLC with specific energy and power of 47 Wh/kg and 13 kW/kg at 60°C with Vmax of 3.9 V. Given the availability of the ACT carbon (obtained from a commercial material), the PYR1(2O1)TFSI-based AEDLCs assembled with ACT carbon electrodes were selected within the EU ILHYPOS project for the development of large-size prototypes. This study demonstrated that PYR1(2O1)TFSI-based AEDLC can operate between -30°C and +60°C and its cycling stability was proved at 60°C up to 27,000 cycles with high Vmax up to 3.8 V. Such AEDLC was further investigated following USABC and DOE FreedomCAR reference protocols for HEV to evaluate its dynamic pulse-power and energy features. It was demonstrated that with Vmax of 3.7 V at T> 30 °C the challenging energy and power targets stated by DOE for power-assist HEVs, and at T> 0 °C the standards for the 12V-TSS and 42V-FSS and TPA 2s-pulse applications are satisfied, if the ratio wmodule/wSC = 2 is accomplished, which, however, is a very demanding condition. Finally, suggestions for further advances in IL-based AEDLC performance were found. Particularly, given that the main contribution to the ESR is the electrode charging resistance, which in turn is affected by the ionic resistance in the pores that is also modulated by pore length, the pore geometry is a key parameter in carbon design not only because it defines the carbon surface but also because it can differentially “amplify” the effect of IL conductivity on the electrode charging-discharging process and, thus, supercapacitor time constant.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nowadays alternative energies are an extremely important topic and the possibility of using hydrogen as an energy carrier must be explored. Many problems infer the technological application of this abundant and powerful resource, one of them the possibility of storage. In the framework of suitable materials for hydrogen storage, magnesium has been the center of this study because it is cheap and the amount of stored hydrogen that it achieves (7.6 wt%) is extremely appealing. Nanostructure helps to overcome the slow hydrogen diffusion and the functionalization of surfaces with transition metals or oxides favors the hydrogen molecule dissociation/recombination. The aim of this research is the investigation of the metal-hydride transformation in magnesium nanoparticles synthesized by inert-gas condensation, exploiting the fact that they are a simple model system. The so produced nanostructured powder has been analyzed in response to nanoparticles surface functionalization by transition metal clusters, specifically palladium, nickel and titanium, chosen on the basis of their completely different Mg-related phase diagrams. The role of the intermetallic phases formed upon heating and hydrogenation treatments will be presented to provide a comprehensive picture of hydrogen sorption in this class of nanostructured storage materials.