4 resultados para hydraulic pump

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Water distribution networks optimization is a challenging problem due to the dimension and the complexity of these systems. Since the last half of the twentieth century this field has been investigated by many authors. Recently, to overcome discrete nature of variables and non linearity of equations, the research has been focused on the development of heuristic algorithms. This algorithms do not require continuity and linearity of the problem functions because they are linked to an external hydraulic simulator that solve equations of mass continuity and of energy conservation of the network. In this work, a NSGA-II (Non-dominating Sorting Genetic Algorithm) has been used. This is a heuristic multi-objective genetic algorithm based on the analogy of evolution in nature. Starting from an initial random set of solutions, called population, it evolves them towards a front of solutions that minimize, separately and contemporaneously, all the objectives. This can be very useful in practical problems where multiple and discordant goals are common. Usually, one of the main drawback of these algorithms is related to time consuming: being a stochastic research, a lot of solutions must be analized before good ones are found. Results of this thesis about the classical optimal design problem shows that is possible to improve results modifying the mathematical definition of objective functions and the survival criterion, inserting good solutions created by a Cellular Automata and using rules created by classifier algorithm (C4.5). This part has been tested using the version of NSGA-II supplied by Centre for Water Systems (University of Exeter, UK) in MATLAB® environment. Even if orientating the research can constrain the algorithm with the risk of not finding the optimal set of solutions, it can greatly improve the results. Subsequently, thanks to CINECA help, a version of NSGA-II has been implemented in C language and parallelized: results about the global parallelization show the speed up, while results about the island parallelization show that communication among islands can improve the optimization. Finally, some tests about the optimization of pump scheduling have been carried out. In this case, good results are found for a small network, while the solutions of a big problem are affected by the lack of constraints on the number of pump switches. Possible future research is about the insertion of further constraints and the evolution guide. In the end, the optimization of water distribution systems is still far from a definitive solution, but the improvement in this field can be very useful in reducing the solutions cost of practical problems, where the high number of variables makes their management very difficult from human point of view.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this Thesis a series of numerical models for the evaluation of the seasonal performance of reversible air-to-water heat pump systems coupled to residential and non-residential buildings are presented. The exploitation of the energy saving potential linked to the adoption of heat pumps is a hard task for designers due to the influence on their energy performance of several factors, like the external climate variability, the heat pump modulation capacity, the system control strategy and the hydronic loop configuration. The aim of this work is to study in detail all these aspects. In the first part of this Thesis a series of models which use a temperature class approach for the prediction of the seasonal performance of reversible air source heat pumps are shown. An innovative methodology for the calculation of the seasonal performance of an air-to-water heat pump has been proposed as an extension of the procedure reported by the European standard EN 14825. This methodology can be applied not only to air-to-water single-stage heat pumps (On-off HPs) but also to multi-stage (MSHPs) and inverter-driven units (IDHPs). In the second part, dynamic simulation has been used with the aim to optimize the control systems of the heat pump and of the HVAC plant. A series of dynamic models, developed by means of TRNSYS, are presented to study the behavior of On-off HPs, MSHPs and IDHPs. The main goal of these dynamic simulations is to show the influence of the heat pump control strategies and of the lay-out of the hydronic loop used to couple the heat pump to the emitters on the seasonal performance of the system. A particular focus is given to the modeling of the energy losses linked to on-off cycling.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The use of environmental DNA (eDNA) analysis as a monitoring tool is becoming more and more widespread. The eDNA metabarcoding methods allow rapid community assessments of different target taxa. This work is focused on the validation of the environmental DNA metabarcoding protocol for biodiversity assessment of freshwater habitats. Scolo Dosolo was chosen as study area and three sampling points were defined for traditional and eDNA analyses. The gutter is a 205 m long anthropic canal located in Sala Bolognese (Bologna, Italy). Fish community and freshwater invertebrate metazoans were the target groups for the analysis. After a preliminary study in summer 2019, 2020 was devoted to the sampling campaign with winter (January), spring (May), summer (July) and autumn (October) surveys. Alongside with the water samplings for the eDNA study, also traditional fish surveys using the electrofishing technique were performed to assess fish community composition; census on invertebrates was performed using an entomological net and a surber sampler. After in silico analysis, the MiFish primer set amplifying a fragment of the 12s rRNA gene was selected for bony fishes. For invertebrates the FWHF2 + FWHR2N primer combination, that amplifies a region of the mitochondrial coi gene, was chosen. Raw reads were analyzed through a bioinformatic pipeline based on OBITools metabarcoding programs package and QIIME2. The OBITools pipeline retrieved seven fish taxa and 54 invertebrate taxa belonging to six different phyla, while QIIME2 recovered eight fish taxa and 45 invertebrate taxa belonging to the same six phyla as the OBITools pipeline. The metabarcoding results were then compared with the traditional surveys data and bibliographic records. Overall, the validated protocol provides a reliable picture of the biodiversity of the study area and an efficient support to the traditional methods.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The use of extracorporeal organ support (ECOS) devices is increasingly widespread, to temporarily sustain or replace the functions of impaired organs in critically ill patients. Among ECOS, respiratory functions are supplied by extracorporeal life support (ECLS) therapies like extracorporeal membrane oxygenation (ECMO) and extracorporeal carbon dioxide removal (ECCO2R), and renal replacement therapies (RRT) are used to support kidney functions. However, the leading cause of mortality in critically ill patients is multi-organ dysfunction syndrome (MODS), which requires a complex therapeutic strategy where extracorporeal treatments are often integrated to pharmacological approach. Recently, the concept of multi-organ support therapy (MOST) has been introduced, and several forms of isolated ECOS devices are sequentially connected to provide simultaneous support to different organ systems. The future of critical illness goes towards the development of extracorporeal devices offering multiple organ support therapies on demand by a single hardware platform, where treatment lines can be used alternately or in conjunction. The aim of this industrial PhD project is to design and validate a device for multi-organ support, developing an auxiliary line for renal replacement therapy (hemofiltration) to be integrated on a platform for ECCO2R. The intended purpose of the ancillary line, which can be connected on demand, is to remove excess fluids by ultrafiltration and achieve volume control by the infusion of a replacement solution, as patients undergoing respiratory support are particularly prone to develop fluid overload. Furthermore, an ultrafiltration regulation system shall be developed using a powered and software-modulated pinch-valve on the effluent line of the hemofilter, proposed as an alternative to the state-of-the-art solution with peristaltic pump.