6 resultados para hybrid zone polymorphism long

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Lung transplantation is a widely accepted therapeutic option for end stage lung disease. Clinical outcome is yet challenged by primary graft failure responsible for the majority of the early mortality, by chronic allograft dysfunction and chronic rejection accounting for more than 30% of deaths after the third postoperative year. Pulmonary surfactant proteins (SP) A, B, C and D are one of the first host defense mechanisms the lung can mount. SP-A in particular, produced by the type II pneumocytes, is active in the innate and adaptive immune system being an opsonin, but also regulating the macrophage and lymphocyte response. The main hypothesis for this project is that pulmonary surfactant protein A polymorphism may determine the early and long term lung allograft survival. Of note SP-A biologic activity seems to be genetically determined and SP-A polymorphisms have been associated to various lung disease. The two SP-A genes SP-A1 and SP-A2 have several polymorphisms within the coding region, SP-A1 (6A, 6A2-20), and SP-A2(1A, 1A0-13). The SP-A gene expression is regulated by cAMP, TTF-1 and glucocorticoids. In vitro studies have indicated that SP-A1 and SP-A2 gene variants may have a variable response to glucocorticoids. We proposed to determine if SP-A gene polymorphism predicts primary graft dysfunction and/or chronic lung allograft dysfunction and if SP-A may serve as a biomarker of lung allograft dysfunction. We also proposed to study the interaction between immunosuppressive drugs and SP-A expression and determine whether this is dependent on SP-A polymorphisms. This study will generate novel information improving our understanding of lung allograft dysfunction. It is conceivable that the information will stimulate the interest for a multi centre study to investigate if SP-A polymorphism may be integrated in the donor lung selection criteria and/or to implement post transplant tailored immunosuppression.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The growing demand for lightweight solutions in every field of engineering is driving the industry to seek new technological solutions to exploit the full potential of different materials. The combination of dissimilar materials with distinct property ranges embodies a transparent allocation of component functions while allowing an optimal mix of their characteristics. From both technological and design perspectives, the interaction between dissimilar materials can lead to severe defects that compromise a multi-material hybrid component's performance and its structural integrity. This thesis aims to develop methodologies for designing, manufacturing, and monitoring of hybrid metal-composite joints and hybrid composite components. In Chapter 1, a methodology for designing and manufacturing hybrid aluminum/composite co-cured tubes is assessed. In Chapter 2, a full-field methodology for fiber misalignment detection and stiffness prediction for hybrid, long fiber reinforced composite systems is shown and demonstrated. Chapter 3 reports the development of a novel technology for joining short fiber systems and metals in a one-step co-curing process using lattice structures. Chapter 4 is dedicated to a novel analytical framework for the design optimization of two lattice architectures.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: The frozen elephant trunk(FET) technique is one of the last evolution in the treatment of complex pathologies of the aortic arch and the descending thoracic aorta.Materials and methods: Between January 2007 and March 2021, a total of 396 patients underwent total aortic arch replacements with the FET technique in our centre.The main indications were thoracic aortic aneurysm(n=104,28.2%), chronic aortic dissection(n=224,53.4%) and acute aortic dissection(n=68, 18.4%). We divided the population in two groups according the position of the distal anastomosis (zone 2 vs zone 3) and the length of the stent graft (< 150 mm vs > 150 mm): conservative group (Zone 2 anastomosis + stent length < 150mm, n. 140 pts) and aggressive group (zone 3 anastomosis + stent length > 150mm, n. 141). Results: The overall 30-day mortality rate was 13%(48/369); the risk factor analysis showed that an aggressive approach was neither a risk factor for major complication (permanent dialysis, tracheostomy, bowel malperfusion and permanent paraplegia) neither for 30-day mortality. The survival rate at 1, 5,10 and 15 years was 87.7%,75%,61.3% and 58.4% respectively. During the follow up, an aortic reintervention was performed in 122 patients (38%), 5 patients received a non-aortic cardiac surgery. Freedom from aortic reintervention at 1-,5- and 10-year was 77%,54% and 44% respectively. The freedom from aortic reintervention was higher in the ‘aggressive’ group (62.5%vs40.0% at 5 years, log-rank=0.056). An aggressive approach was not protective for aortic reintervention at follow up and for death at follow up. Conclusions: The FET technique represents a feasible and efficient option in the treatment of complex thoracic aortic pathologies. An aortic reintervention after FET is very common and the decision-making approach should consider and balance the higher risk of an aggressive approach in terms of post-operative complication versus the higher risk of a second aortic reintervention at follow-up.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Interfacing materials with different intrinsic chemical-physical characteristics allows for the generation of a new system with multifunctional features. Here, this original concept is implemented for tailoring the functional properties of bi-dimensional black phosphorus (2D bP or phosphorene) and organic light-emitting transistors (OLETs). Phosphorene is highly reactive under atmospheric conditions and its small-area/lab-scale deposition techniques have hampered the introduction of this material in real-world applications so far. The protection of 2D bP against the oxygen by means of functionalization with alkane molecules and pyrene derivatives, showed long-term stability with respect to the bare 2D bP by avoiding remarkable oxidation up to 6 months, paving the way towards ultra-sensitive oxygen chemo-sensors. A new approach of deposition-precipitation heterogeneous reaction was developed to decorate 2D bP with Au nanoparticles (NP)s, obtaining a “stabilizer-free” that may broaden the possible applications of the 2D bP/Au NPs interface in catalysis and biodiagnostics. Finally, 2D bP was deposited by electrospray technique, obtaining oxidized-phosphorous flakes as wide as hundreds of µm2 and providing for the first time a phosphorous-based bidimensional system responsive to electromechanical stimuli. The second part of the thesis focuses on the study of organic heterostructures in ambipolar OLET devices, intriguing optoelectronic devices that couple the micro-scaled light-emission with electrical switching. Initially, an ambipolar single-layer OLET based on a multifunctional organic semiconductor, is presented. The bias-depending light-emission shifted within the transistor channel, as expected in well-balanced ambipolar OLETs. However, the emitted optical power of the single layer-based device was unsatisfactory. To improve optoelectronic performance of the device, a multilayer organic architecture based on hole-transporting semiconductor, emissive donor-acceptor blend and electron-transporting semiconductor was optimized. We showed that the introduction of a suitable electron-injecting layer at the interface between the electron-transporting and light-emission layers may enable a ≈ 2× improvement of efficiency at reduced applied bias.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The growing demand for flexible and low-cost electronics has driven research towards the study of novel semiconducting materials to replace traditional semiconductors like silicon and germanium, which are limited by mechanical rigidity and high production cost. Some of the most promising semiconductors in this sense are metal halide perovskites (MHPs), which combine low-cost fabrication and solution processability with exceptional optoelectronic properties like high absorption coefficient, long charge carrier lifetime, and high mobility. These properties, combined with an impressive effort by many research groups around the world, have enabled the fabrication of solar cells with record-breaking efficiencies, and photodetectors with better performance than commercial ones. However, MHP devices are still affected by issues that are hindering their commercialization, such as degradation under humidity and illumination, ion migration, electronic defects, and limited resistance to mechanical stress. The aim of this thesis work is the experimental characterization of these phenomena. We investigated the effects of several factors, such as X-ray irradiation, exposure to environmental gases, and atmosphere during synthesis, on the optoelectronic properties of MHP single crystals. We achieved this by means of optical spectroscopy, electrical measurements, and chemical analyses. We identified the cause of mechanical delamination in MHP/silicon tandem solar cells by atomic force microscopy measurements. We characterized electronic defects and ion migration in MHP single crystals by applying for the first time the photo-induced current transient spectroscopy technique to this class of materials. This research allowed to gain insight into both intrinsic defects, like ion migration and electron trapping, and extrinsic defects, induced by X-ray irradiation, mechanical stress, and exposure to humidity. This research paves the way to the development of methods that heal and passivate these defects, enabling improved performance and stability of MHP optoelectronic devices.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Depuis 70 ans, les outils de planification des zones dédiées aux activités productives (Zones industrielles, Zones d’activités économiques, etc.) ont produit des espaces déconnectés des spécificités physiques et sociales du territoire, et ont participé à réduire le sol à un support de production soumis en premier lieu à des logiques de marché. Aujourd’hui, nous constatons l’inadéquation de ces outils avec leur objectif : le développement du territoire. L’ambition de la thèse est de réfléchir à une démarche alternative qui permet d’envisager des outils de planification capables d’instaurer une relation de maintien et de valorisation des ressources territoriales. Face à un aménagement des activités productives inadéquat au développement durable du territoire, la thèse propose de retracer une généalogie de la démarche « territorialiste » qui vise à établir une relation synergique entre la production et les ressources territoriales. Une démarche « Eutopique » de retour au territoire qui, en prenant en compte le lien indissociable entre défis sociaux et environnementaux, permet d’un côté de rétablir une relation aux ressources naturelles et d’en respecter les cycles et les rythmes écologiques, et de l’autre d’identifier des éléments de réponse à la crise sociale. Suite à une introduction critique du rapport que les activités productives établissent avec le territoire, le raisonnement se développe en quatre parties : Les trois premières parties suivent une approche généalogique et montrent comment les concepts de cette démarche ont évolué et se sont transformées en s’adaptant à différents contextes, et répondant à la question de pourquoi et comment ces transferts théoriques ont vu le jour. Dans la quatrième partie de la thèse est retracée l’influence et le développement original que cette démarche trouve aujourd’hui en France : l’objectif est celui d’ouvrir sur des stratégies pour envisager un système productif capable de développer le territoire dans le temps long.