10 resultados para host defense response
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
Abstract The aim of this work was the development of a murine model of septic arthrosynovitis and osteomyelitis caused by Staphylococcus aureus, which could mimic the natural disease occurring in humans and which could be suitable for testing preventive and therapeutic interventions. This model could be particularly useful since S. aureus-mediated joints and bones infections are relevant in humans, both in terms of frequency and severity. Our attention focused in tracking bacterial infiltration in joints and bones over time using different microbiological and hystopathological tools, which allowed us to have a complete overview of the situation and to evaluate the immunological actions undertaken by the host to contain or eradicate the bacterial infection. Antibodies and cytokines profiles, as well as recruitment of host immune cells at joints of immunized and infected mice were therefore monitored for a time period that allowed us to study both the acute and the chronic phases of the disease in situ. Finally the Novartis vaccine formulation proposed against S. aureus infections was tested for its capacity to protect immunized mice from joints infections, and the preventive immunization was compared to a standard antibiotic prophylaxis. The availability of powerful tools to study specific bacterial-mediated diseases is nowadays an important requirement for the scientific community to shed light on the complex interactions between host and pathogens and to test treatments for preventing or contrasting infections. We believe that our work significantly contributes to the overall knowledge in the field of S. aureus-dependent pathologies, opening the possibility for further investigations in several fields of study.
Resumo:
Lung transplantation is a widely accepted therapeutic option for end stage lung disease. Clinical outcome is yet challenged by primary graft failure responsible for the majority of the early mortality, by chronic allograft dysfunction and chronic rejection accounting for more than 30% of deaths after the third postoperative year. Pulmonary surfactant proteins (SP) A, B, C and D are one of the first host defense mechanisms the lung can mount. SP-A in particular, produced by the type II pneumocytes, is active in the innate and adaptive immune system being an opsonin, but also regulating the macrophage and lymphocyte response. The main hypothesis for this project is that pulmonary surfactant protein A polymorphism may determine the early and long term lung allograft survival. Of note SP-A biologic activity seems to be genetically determined and SP-A polymorphisms have been associated to various lung disease. The two SP-A genes SP-A1 and SP-A2 have several polymorphisms within the coding region, SP-A1 (6A, 6A2-20), and SP-A2(1A, 1A0-13). The SP-A gene expression is regulated by cAMP, TTF-1 and glucocorticoids. In vitro studies have indicated that SP-A1 and SP-A2 gene variants may have a variable response to glucocorticoids. We proposed to determine if SP-A gene polymorphism predicts primary graft dysfunction and/or chronic lung allograft dysfunction and if SP-A may serve as a biomarker of lung allograft dysfunction. We also proposed to study the interaction between immunosuppressive drugs and SP-A expression and determine whether this is dependent on SP-A polymorphisms. This study will generate novel information improving our understanding of lung allograft dysfunction. It is conceivable that the information will stimulate the interest for a multi centre study to investigate if SP-A polymorphism may be integrated in the donor lung selection criteria and/or to implement post transplant tailored immunosuppression.
Resumo:
Bifidobacterium is an important genus of the human gastrointestinal microbiota, affecting several host physiological features. Despite the numerous Bifidobacterium related health-promoting activities, there is still a dearth of information about the molecular mechanisms at the basis of the interaction between this microorganism and the host. Bacterial surface associated proteins may play an important role in this interaction because of their ability to intervene with host molecules, as recently reported for the host protein plasminogen. Plasminogen is the zymogen of the trypsin-like serine protease plasmin, an enzyme with a broad substrate specificity. Aim of this thesis is to deepen the knowledge about the interaction between Bifidobacterium and the human plasminogen system and its role in the Bifidobacterium-host interaction process. As a bifidobacterial model, B. animalis subsp. lactis BI07 has been used because of its large usage in dairy and pharmaceutical preparations. We started from the molecular characterization of the interaction between plasminogen and one bifidobacterial plasminogen receptor, DnaK, a cell wall protein showing high affinity for plasminogen, and went on with the study of the impact of intestinal environmental factors, such as bile salts and inflammation, on the plasminogen-mediated Bifidobacterium-host interaction. According to our in vitro findings, by enhancing the activation of the bifidobacterial bound plasminogen to plasmin, the host inflammatory response results in the decrease of the bifidobacterial adhesion to the host enterocytes, favouring bacterial migration to the luminal compartment. Conversely, in the absence of inflammation, plasminogen acts as a molecular bridge between host enterocytes and bifidobacteria, enhancing Bifidobacterium adhesion. Furthermore, adaptation to physiological concentrations of bile salts enhances the capability of this microorganism to interact with the host plasminogen system. The host plasminogen system thus represents an important and flexible tool used by bifidobacteria in the cross-talk with the host.
Resumo:
Citokines are proteins produced by several cell types and secreted in response to various stimuli. These molecules are able to modify the behaviour of other cells inducing activities like growth, differentiation and apoptosis. In the last years, veterinary scientists have investigated the role played by these factors; in fact, cytokines can act as intercellular communicative signals in immune response, cell damage repair and hematopoiesis. Up to date, various cytokines have been identified and in depth comprehension of their effects in physiology, pathology and therapy is an interesting field of research. This thesis aims to understand the role played by these mediators during natural or experimentally induced pathologies. In particular, it has been evaluated the genic and protein expressions of a large number of cytokines during several diseases and starting from different matrix. Considering the heterogeneity of materials used in experimentations, multiple methods and protocols of nucleic acids and proteins extractions have been standardized. Results on cytokines expression obtained from various in vitro and in vivo experimental studies have shown how important these mediators are in regulation and modulation of the host immune response also in veterinary medicine. In particular, the analysis of inflammatory and septic markers, like cytokines, has allowed a better understanding in the pathogenesis during horse Recurrent Airway Obstruction, foal sepsis, Bovine Viral Diarrhea Virus infection and dog Parvovirus infection and the effects of these agents on the host immune system. As experimentations with mice have shown, some pathologies of the respiratory and nervous system can be reduced or even erased by blocking cytokines inflammatory production. The in vitro cytokines expression evaluation in cells which are in vivo involved in the response to exogenous (like pathogens) or endogenous (as it happens during autoimmune diseases) inflammatory stimuli could represent a model for studying citokines effects during the host immune response. This has been analyzed using lymphocytes cultured with several St. aureus strains isolated from bovine mastitic milk and different colostrum products. In the first experiment different cytokines were expressed depending on enterotoxins produced, justifying a different behaviour of the microrganism in the mammal gland. In the second one, bone marrow cells derived incubated with murine lymphocytes with colostrum products have shown various cluster of differentiation expression , different proliferation and a modified cytokines profile. A better understanding of cytokine expression mechanisms will increase the know-how on immune response activated by several pathogen agents. In particular, blocking the cytokine production, the inhibition or catalyzation of the receptor binding mechanism and the modulation of signal transduction mechanism will represent a novel therapeutic strategy in veterinary medicine.
Resumo:
The Poxviruses are a family of double stranded DNA (dsDNA) viruses that cause disease in many species, both vertebrate and invertebrate. Their genomes range in size from 135 to 365 kbp and show conservation in both organization and content. In particular, the central genomic regions of the chordopoxvirus subfamily (those capable of infecting vertebrates) contain 88 genes which are present in all the virus species characterised to date and which mostly occur in the same order and orientation. In contrast, however, the terminal regions of the genomes frequently contain genes that are species or genera-specific and that are not essential for the growth of the virus in vitro but instead often encode factors with important roles in vivo including modulation of the host immune response to infection and determination of the host range of the virus. The Parapoxviruses (PPV), of which Orf virus is the prototypic species, represent a genus within the chordopoxvirus subfamily of Poxviridae and are characterised by their ability to infect ruminants and humans. The genus currently contains four recognised species of virus, bovine papular stomatitis virus (BPSV) and pseudocowpox virus (PCPV) both of which infect cattle, orf virus (OV) that infects sheep and goats, and parapoxvirus of red deer in New Zealand (PVNZ). The ORFV genome has been fully sequenced, as has that of BPSV, and is ~138 kb in length encoding ~132 genes. The vast majority of these genes allow the virus to replicate in the cytoplasm of the infected host cell and therefore encode proteins involved in replication, transcription and metabolism of nucleic acids. These genes are well conserved between all known genera of poxviruses. There is however another class of genes, located at either end of the linear dsDNA genome, that encode proteins which are non-essential for replication and generally dictate host range and virulence of the virus. The non-essential genes are often the most variable within and between species of virus and therefore are potentially useful for diagnostic purposes. Given their role in subverting the host-immune response to infection they are also targets for novel therapeutics. The function of only a relatively small number of these proteins has been elucidated and there are several genes whose function still remains obscure principally because there is little similarity between them and proteins of known function in current sequence databases. It is thought that by selectively removing some of the virulence genes, or at least neutralising the proteins in some way, current vaccines could be improved. The evolution of poxviruses has been proposed to be an adaptive process involving frequent events of gene gain and loss, such that the virus co-evolves with its specific host. Gene capture or horizontal gene transfer from the host to the virus is considered an important source of new viral genes including those likely to be involved in host range and those enabling the virus to interfere with the host immune response to infection. Given the low rate of nucleotide substitution, recombination can be seen as an essential evolutionary driving force although it is likely underestimated. Recombination in poxviruses is intimately linked to DNA replication with both viral and cellular proteins participate in this recombination-dependent replication. It has been shown, in other poxvirus genera, that recombination between isolates and perhaps even between species does occur, thereby providing another mechanism for the acquisition of new genes and for the rapid evolution of viruses. Such events may result in viruses that have a selective advantage over others, for example in re-infections (a characteristic of the PPV), or in viruses that are able to jump the species barrier and infect new hosts. Sequence data related to viral strains isolated from goats suggest that possible recombination events may have occurred between OV and PCPV (Ueda et al. 2003). The recombination events are frequent during poxvirus replication and comparative genomic analysis of several poxvirus species has revealed that recombinations occur frequently on the right terminal region. Intraspecific recombination can occur between strains of the same PPV species, but also interspecific recombination can happen depending on enough sequence similarity to enable recombination between distinct PPV species. The most important pre-requisite for a successful recombination is the coinfection of the individual host by different virus strains or species. Consequently, the following factors affecting the distribution of different viruses to shared target cells need to be considered: dose of inoculated virus, time interval between inoculation of the first and the second virus, distance between the marker mutations, genetic homology. At present there are no available data on the replication dynamics of PPV in permissive and non permissive hosts and reguarding co-infetions there are no information on the interference mechanisms occurring during the simultaneous replication of viruses of different species. This work has been carried out to set up permissive substrates allowing the replication of different PPV species, in particular keratinocytes monolayers and organotypic skin cultures. Furthermore a method to isolate and expand ovine skin stem cells was has been set up to indeep further aspects of viral cellular tropism during natural infection. The study produced important data to elucidate the replication dynamics of OV and PCPV virus in vitro as well as the mechanisms of interference that can arise during co-infection with different viral species. Moreover, the analysis carried on the genomic right terminal region of PCPV 1303/05 contributed to a better knowledge of the viral genes involved in host interaction and pathogenesis as well as to locate recombination breakpoints and genetic homologies between PPV species. Taken together these data filled several crucial gaps for the study of interspecific recombinations of PPVs which are thought to be important for a better understanding of the viral evolution and to improve the biosafety of antiviral therapy and PPV-based vectors.
Resumo:
L’osteomielite associata all’impianto è un processo infettivo a carico del tessuto osseo spesso accompagnato dalla distruzione dell’osso stesso. La patogenesi delle osteomieliti associate all’impianto si basa su due concetti fondamentali: l’internalizzazione del patogeno all’interno degli osteoblasti e la capacità dei batteri di formare il biofilm. Entrambi i meccanismi consentono infatti di prevenire l’eliminazione del batterio da parte delle difese immunitarie dell’ospite e di ostacolare l’azione della maggior parte degli antibiotici (che non penetrano e non agiscono pertanto su microrganismi intracellulari), così sostenendo ed alimentando l’infezione. Il saggio di invasione messo a punto su micropiastra ha consentito di investigare in modo approfondito e dettagliato il ruolo ed il peso dell’internalizzazione nella patogenesi delle infezioni ortopediche peri-protesiche causate da S. aureus, S. epidermidis, S. lugdunensis ed E. faecalis. Lo studio ha evidenziato che l’invasione delle cellule MG-63 non rappresenta un meccanismo patogenetico delle infezioni ortopediche associate all’impianto causate da S. epidermidis, S. lugdunensis ed E. faecalis; al contrario, in S. aureus la spiccata capacità invasiva rappresenta un’abile strategia patogenetica che consente al patogeno di sfuggire alla terapia sistemica e alla risposta immunitaria dell’ospite. È stato studiato inoltre il ruolo dell’immunità innata nella difesa contro il biofilm batterico. In seguito all’incubazione del biofilm opsonizzato di S. epidermidis con i PMN è stato possibile osservare la formazione delle NETs. Le NETs rappresentano ottime armi nella difesa contro il biofilm batterico, infatti le trappole sono in grado di limitare la diffusione batterica e quindi di confinare l’infezione. La comprensione del ruolo dell’internalizzazione nella patogenesi delle osteomieliti associate all’impianto e lo studio della risposta immunitaria innata a questo tipo di infezioni, spesso caratterizzate dalla presenza di biofilm, sono presupposti per identificare e affinare le migliori strategie terapeutiche necessarie ad eradicare l'infezione.
Resumo:
Parasitic wasps attack a number of insect species on which they feed, either externally or internally. This requires very effective strategies for suppressing the immune response and a finely tuned interference with the host physiology that is co-opted for the developing parasitoid progeny. The wealth of physiological host alterations is mediated by virulence factors encoded by the wasp or, in some cases, by polydnaviruses (PDVs), unique viral symbionts injected into the host at oviposition along with the egg, venom and ovarian secretions. PDVs are among the most powerful immunosuppressors in nature, targeting insect defense barriers at different levels. During my PhD research program I have used Drosophila melanogaster as a model to expand the functional analysis of virulence factors encoded by PDV focusing on the molecular processes underlying the disruption of the host endocrine system. I focused my research on a member of the ankyrin (ank) gene family, an immunosuppressant found in bracovirus, which associates with the parasitic wasp Toxoneuron nigriceps. I found that ankyrin disrupts ecdysone biosynthesis by impairing the vesicular traffic of ecdysteroid precursors in the cells of the prothoracic gland and results in developmental arrest.
Resumo:
Tomato (Lycopersicon esculentum Mill., Solanum lycopersicon L.) is one of the most popular vegetable throughout the world, and the importance of its cultivation is threatened by a wide array of pathogens. In the last twenty years this plant has been successfully used as a model plant to investigate the induction of defense pathways after exposure to fungal, bacterial and abiotic molecules, showing triggering of different mechanisms of resistance. Understanding these mechanisms in order to improve crop protection is a main goal for Plant Pathology. The aim of this study was to search for general or race-specific molecules able to determine in Solanum lycopersicon immune responses attributable to the main systems of plant defense: non-host, host-specific and induced resistance. Exopolysaccharides extracted by three fungal species (Aureobasidium pullulans, Cryphonectria parasitica and Epicoccum purpurascens), were able to induce transcription of pathogenesis-related (PR) proteins and accumulation of enzymes related to defense in tomato plants cv Money Maker,using the chemical inducer Bion® as a positive control. During the thesis, several Pseudomonas spp. strains were also isolated and tested for their antimicrobial activity and ability to produce antibiotics. Using as a positive control jasmonic acid, one of the selected strain was shown to induce a form of systemic resistance in tomato. Transcription of PRs and reduction of disease severity against the leaf pathogen Pseduomonas syringae pv. tomato was determined in tomato plants cv Money Maker and cv Perfect Peel, ensuring no direct contact between the selected rhizobacteria and the aerial part of the plant. To conclude this work, race-specific resistance of tomato against the leaf mold Cladosporium fulvum is also deepened, describing the project followed at the Phytopathology Laboratory of Wageningen (NL) in 2007, dealing with localization of a specific R-Avr interaction in transfected tomato protoplast cultures through fluorescence microscopy.
Resumo:
In the first part of my thesis I studied the mechanism of initiation of the innate response to HSV-1. Innate immune response is the first line of defense set up by the cell to counteract pathogens infection and it is elicited by the activation of a number of membrane or intracellular receptors and sensors, collectively indicated as PRRs, Patter Recognition Receptors. We reported that the HSV pathogen-associated molecular patterns (PAMP) that activate Toll-like receptor 2 (TLR2) and lead to the initiation of innate response are the virion glycoproteins gH/gL and gB, which constitute the conserved fusion core apparatus across the Herpesvirus. Specifically gH/gL is sufficient to initiate a signaling cascade which leads to NF-κB activation. Then, by gain and loss-of-function approaches, we found that αvβ3-integrin is a sensor of and plays a crucial role in the innate defense against HSV-1. We showed that αvβ3-integrin signals through a pathway that concurs with TLR2, affects activation/induction of interferons type 1, NF-κB, and a polarized set of cytokines and receptors. Thus, we demonstrated that gH/gL is sufficient to induce IFN1 and NF-κB via this pathway. From these data, we proposed that αvβ3-integrin is considered a class of non-TLR pattern recognition receptors. In the second part of my thesis I studied the capacity of human mesenchymal stromal cells isolated by fetal membranes (FM-hMSCs) to be used as carrier cells for the delivery of retargeted R-LM249 virus. The use of systemically administrated carrier cells to deliver oncolytic viruses to tumoral targets is a promising strategy in oncolytic virotherapy. We observed that FM-hMSCs can be infected by R-LM249 and we optimized the infection condition; then we demonstrate that stromal cells sustain the replication of retargeted R-LM249 and spread it to target tumoral cells. From these preliminary data FM-hMSCs resulted suitable to be used as carrier cells
Resumo:
Adhesion, immune evasion and invasion are key determinants during bacterial pathogenesis. Pathogenic bacteria possess a wide variety of surface exposed and secreted proteins which allow them to adhere to tissues, escape the immune system and spread throughout the human body. Therefore, extensive contacts between the human and the bacterial extracellular proteomes take place at the host-pathogen interface at the protein level. Recent researches emphasized the importance of a global and deeper understanding of the molecular mechanisms which underlie bacterial immune evasion and pathogenesis. Through the use of a large-scale, unbiased, protein microarray-based approach and of wide libraries of human and bacterial purified proteins, novel host-pathogen interactions were identified. This approach was first applied to Staphylococcus aureus, cause of a wide variety of diseases ranging from skin infections to endocarditis and sepsis. The screening led to the identification of several novel interactions between the human and the S. aureus extracellular proteomes. The interaction between the S. aureus immune evasion protein FLIPr (formyl-peptide receptor like-1 inhibitory protein) and the human complement component C1q, key players of the offense-defense fighting, was characterized using label-free techniques and functional assays. The same approach was also applied to Neisseria meningitidis, major cause of bacterial meningitis and fulminant sepsis worldwide. The screening led to the identification of several potential human receptors for the neisserial adhesin A (NadA), an important adhesion protein and key determinant of meningococcal interactions with the human host at various stages. The interaction between NadA and human LOX-1 (low-density oxidized lipoprotein receptor) was confirmed using label-free technologies and cell binding experiments in vitro. Taken together, these two examples provided concrete insights into S. aureus and N. meningitidis pathogenesis, and identified protein microarray coupled with appropriate validation methodologies as a powerful large scale tool for host-pathogen interactions studies.