3 resultados para highway operating contracts

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The recent trend in Web services is fostering a computing scenario where loosely coupled parties interact in a distributed and dynamic environment. Such interactions are sequences of xml messages and in order to assemble parties – either statically or dynamically – it is important to verify that the “contracts” of the parties are “compatible”. The Web Service Description Language (wsdl) is a standard used for describing one-way (asynchronous) and request/response (synchronous) interactions. Web Service Conversation Language extends wscl contracts by allowing the description of arbitrary, possibly cyclic sequences of exchanged messages between communicating parties. Unfortunately, neither wsdl nor wscl can effectively define a notion of compatibility, for the very simple reason that they do not provide any formal characterization of their contract languages. We define two contract languages for Web services. The first one is a data contract language and allow us to describe a Web service in terms of messages (xml documents) that can be sent or received. The second one is a behavioral contract language and allow us to give an abstract definition of the Web service conversation protocol. Both these languages are equipped with a sort of “sub-typing” relation and, therefore, they are suitable to be used for querying Web services repositories. In particular a query for a service compatible with a given contract may safely return services with “greater” contract.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The development of High-Integrity Real-Time Systems has a high footprint in terms of human, material and schedule costs. Factoring functional, reusable logic in the application favors incremental development and contains costs. Yet, achieving incrementality in the timing behavior is a much harder problem. Complex features at all levels of the execution stack, aimed to boost average-case performance, exhibit timing behavior highly dependent on execution history, which wrecks time composability and incrementaility with it. Our goal here is to restitute time composability to the execution stack, working bottom up across it. We first characterize time composability without making assumptions on the system architecture or the software deployment to it. Later, we focus on the role played by the real-time operating system in our pursuit. Initially we consider single-core processors and, becoming less permissive on the admissible hardware features, we devise solutions that restore a convincing degree of time composability. To show what can be done for real, we developed TiCOS, an ARINC-compliant kernel, and re-designed ORK+, a kernel for Ada Ravenscar runtimes. In that work, we added support for limited-preemption to ORK+, an absolute premiere in the landscape of real-word kernels. Our implementation allows resource sharing to co-exist with limited-preemptive scheduling, which extends state of the art. We then turn our attention to multicore architectures, first considering partitioned systems, for which we achieve results close to those obtained for single-core processors. Subsequently, we shy away from the over-provision of those systems and consider less restrictive uses of homogeneous multiprocessors, where the scheduling algorithm is key to high schedulable utilization. To that end we single out RUN, a promising baseline, and extend it to SPRINT, which supports sporadic task sets, hence matches real-world industrial needs better. To corroborate our results we present findings from real-world case studies from avionic industry.