7 resultados para high resolution
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
This volume is a collection of the work done in a three years-lasting PhD, focused in the analysis of Central and Southern Adriatic marine sediments, deriving from the collection of a borehole and many cores, achieved thanks to the good seismic-stratigraphic knowledge of the study area. The work was made out within European projects EC-EURODELTA (coordinated by Fabio Trincardi, ISMAR-CNR), EC-EUROSTRATAFORM (coordinated by Phil P. E. Weaver, NOC, UK), and PROMESS1 (coordinated by Serge Bernè, IFREMER, France). The analysed sedimentary successions presented highly expanded stratigraphic intervals, particularly for the last 400 kyr, 60 kyr and 6 kyr BP. These three different time-intervals resulted in a tri-partition of the PhD thesis. The study consisted of the analysis of planktic and benthic foraminifers’ assemblages (more than 560 samples analysed), as well as in preparing the material for oxygen and carbon stable isotope analyses, and interpreting and discussing the obtained dataset. The chronologic framework of the last 400 kyr was achieved for borehole PRAD1-2 (within the work-package WP6 of PROMESS1 project), collected in 186.5 m water depth. The proposed chronology derives from a multi-disciplinary approach, consisting of the integration of numerous and independent proxies, some of which analysed by other specialists within the project. The final framework based on: micropaleontology (calcareous nannofossils and foraminifers’ bioevents), climatic cyclicity (foraminifers’ assemblages), geochemistry (oxygen stable isotope, made out on planktic and benthic records), paleomagnetism, radiometric ages (14C AMS), teprhochronology, identification of sapropel-equivalent levels (Se). It’s worth to note the good consistency between the oxygen stable isotope curve obtained for borehole PRAD1-2 and other deeper Mediterranean records. The studied proxies allowed the recognition of all the isotopic intervals from MIS10 to MIS1 in PRAD1-2 record, and the base of the borehole has been ascribed to the early MIS11. Glacial and interglacial intervals identified in the Central Adriatic record have been analysed in detail for the paleo-environmental reconstruction, as well. For instance, glacial stages MIS6, MIS8 and MIS10 present peculiar foraminifers’ assemblages, composed by benthic species typical of polar regions and no longer living in the Central Adriatic nowadays. Moreover, a deepening trend in the paleo-bathymetry during glacial intervals was observed, from MIS10 (inner-shelf environment) to MIS4 (mid-shelf environment).Ten sapropel-equivalent levels have been recognised in PRAD1-2 Central Adriatic record. They showed different planktic foraminifers’ assemblages, which allowed the first distinction of events occurred during warm-climate (Se5, Se7), cold-climate (Se4, Se6 and Se8) and temperate-intermediate-climate (Se1, Se3, Se9, Se’, Se10) conditions, consistently with literature. Cold-climate sapropel equivalents are characterised by the absence of an oligotrophic phase, whereas warm-temeprate-climate sapropel equivalents present both the oligotrophic and the eutrophic phases (except for Se1). Sea floor conditions vary, according to benthic foraminifers’ assemblages, from relatively well oxygenated (Se1, Se3), to dysoxic (Se9, Se’, Se10), to highly dysoxic (Se4, Se6, Se8) to events during which benthic foraminifers are absent (Se5, Se7). These two latter levels are also characterised by the lamination of the sediment, feature never observed in literature in such shallow records. The enhanced stratification of the water column during the events Se8, Se7, Se6, Se5, Se4, and the concurring strong dilution of shallow water, pointed out by the isotope record, lead to the hypothesis of a period of intense precipitation in the Central Adriatic region, possibly due to a northward shift of the African Monsoon. Finally, the expression of Central Adriatic PRAD1-2 Se5 equivalent was compared with the same event, as registered in other Eastern Mediterranean areas. The sequence of substantially the same planktic foraminifers’ bioevents has been consistently recognised, indicating a similar evolution of the water column all over the Eastern Mediterranean; yet, the synchronism of these events cannot be demonstrated. A high resolution analysis of late Holocene (last 6000 years BP) climate change was carried out for the Adriatic area, through the recognition of planktic and benthic foraminifers’ bioevents. In particular, peaks of planktic Globigerinoides sacculifer (four during the last 5500 years BP in the most expanded core) have been interpreted, based on the ecological requirements of this species, as warm-climate, arid intervals, correspondent to periods of relative climatic optimum, such as, for instance, the Medieval Warm Period, the Roman Age, the Late Bronze Age and the Copper Age. Consequently, the minima in the abundance of this biomarker could correspond to relatively cooler and more rainy periods. These conclusions are in good agreement with the isotopic and the pollen data. The Last Occurrence (LO) of G. sacculifer has been dated in this work at an average age of 550 years BP, and it is the best bioevent approximating the base of the Little Ice Age in the Adriatic. Recent literature reports the same bioevent in the Levantine Basin, showing a rather consistent age. Therefore, the LO of G. sacculifer has the potential to be extended to all the Eastern Mediterranean. Within the Little Ice Age, benthic foraminifer V. complanata shows two distinct peaks in the shallower Adriatic cores analysed, collected hundred kilometres apart, inside the mud belt environment. Based on the ecological requirements of this species, these two peaks have been interpreted as the more intense (cold and rainy) oscillations inside the LIA. The chronologic framework of the analysed cores is robust, being based on several range-finding 14C AMS ages, on estimates of the secular variation of the magnetic field, on geochemical estimates of the activity depth of 210Pb short-lived radionuclide (for the core-top ages), and is in good agreement with tephrochronologic, pollen and foraminiferal data. The intra-holocenic climate oscillations find out in the Adriatic have been compared with those pointed out in literature from other records of the Northern Hemisphere, and the chronologic constraint seems quite good. Finally, the sedimentary successions analysed allowed the review and the update of the foraminifers’ ecobiostratigraphy available from literature for the Adriatic region, thanks to the achievement of 16 ecobiozones for the last 60 kyr BP. Some bioevents are restricted to the Central Adriatic (for instance the LO of benthic Hyalinea balthica , approximating the MIS3/MIS2 boundary), others occur all over the Adriatic basin (for instance the LO of planktic Globorotalia inflata during MIS3, individuating Dansgaard-Oeschger cycle 8 (Denekamp)).
Resumo:
The theory of the 3D multipole probability tomography method (3D GPT) to image source poles, dipoles, quadrupoles and octopoles, of a geophysical vector or scalar field dataset is developed. A geophysical dataset is assumed to be the response of an aggregation of poles, dipoles, quadrupoles and octopoles. These physical sources are used to reconstruct without a priori assumptions the most probable position and shape of the true geophysical buried sources, by determining the location of their centres and critical points of their boundaries, as corners, wedges and vertices. This theory, then, is adapted to the geoelectrical, gravity and self potential methods. A few synthetic examples using simple geometries and three field examples are discussed in order to demonstrate the notably enhanced resolution power of the new approach. At first, the application to a field example related to a dipole–dipole geoelectrical survey carried out in the archaeological park of Pompei is presented. The survey was finalised to recognize remains of the ancient Roman urban network including roads, squares and buildings, which were buried under the thick pyroclastic cover fallen during the 79 AD Vesuvius eruption. The revealed anomaly structures are ascribed to wellpreserved remnants of some aligned walls of Roman edifices, buried and partially destroyed by the 79 AD Vesuvius pyroclastic fall. Then, a field example related to a gravity survey carried out in the volcanic area of Mount Etna (Sicily, Italy) is presented, aimed at imaging as accurately as possible the differential mass density structure within the first few km of depth inside the volcanic apparatus. An assemblage of vertical prismatic blocks appears to be the most probable gravity model of the Etna apparatus within the first 5 km of depth below sea level. Finally, an experimental SP dataset collected in the Mt. Somma-Vesuvius volcanic district (Naples, Italy) is elaborated in order to define location and shape of the sources of two SP anomalies of opposite sign detected in the northwestern sector of the surveyed area. The modelled sources are interpreted as the polarization state induced by an intense hydrothermal convective flow mechanism within the volcanic apparatus, from the free surface down to about 3 km of depth b.s.l..
The gaseous environment of radio galaxies: a new perspective from high-resolution x-ray spectroscopy
Resumo:
It is known that massive black holes have a profound effect on the evolution of galaxies, and possibly on their formation by regulating the amount of gas available for the star formation. However, how black hole and galaxies communicate is still an open problem, depending on how much of the energy released interacts with the circumnuclear matter. In the last years, most studies of feedback have primarily focused on AGN jet/cavity systems in the most massive galaxy clusters. This thesis intends to investigate the feedback phenomena in radio--loud AGNs from a different perspective studying isolated radio galaxies, through high-resolution spectroscopy. In particular one NLRG and three BLRG are studied, searching for warm gas, both in emission and absorption, in the soft X-ray band. I show that the soft spectrum of 3C33 originates from gas photoionized by the central engine. I found for the first time WA in 3C382 and 3C390.3. I show that the observed warm emitter/absorbers is not uniform and probably located in the NLR. The detected WA is slow implying a mass outflow rate and kinetic luminosity always well below 1% the L(acc) as well as the P(jet). Finally the radio--loud properties are compared with those of type 1 RQ AGNs. A positive correlation is found between the mass outflow rate/kinetic luminosity, and the radio loudness. This seems to suggest that the presence of a radio source (the jet?) affects the distribution of the absorbing gas. Alternatively, if the gas distribution is similar in Seyferts and radio galaxies, the M(out) vs rl relation could simply indicate a major ejection of matter in the form of wind in powerful radio AGNs.
Resumo:
The spectroscopic investigation of the gas-phase molecules relevant for the chemistry of the atmosphere and of the interstellar medium has been performed. Two types of molecules have been studied, linear and symmetric top. Several experimental high-resolution techniques have been adopted, exploiting the spectrometers available in Bologna, Venezia, Brussels and Wuppertal: Fourier-Transform-Infrared Spectroscopy, Cavity-Ring-Down Spectroscopy, Cavity-Enhanced-Absorption Spectroscopy, Tunable-Diode-Laser Spectroscopy. Concerning linear molecules, the spectra of a number of isotopologues of acetylene, 12C2D2, H12C13CD, H13C12CD, 13C12CD2, of DCCF and monodeuterodiacetylene DC4H, have been studied, from 320 to 6800 cm-1. This interval covers bending, stretching, overtone and combination bands, the focus on specific ranges depending on the molecule. In particular, the analysis of the bending modes has been performed for 12C2D2 (450-2200 cm-1), 13C12CD2 (450-1700 cm-1), DCCF (320-850cm-1) and DC4H (450-1100 cm-1), of the stretching-bending system for 12C2D2 (450-5500 cm-1) and of the 2nu1 and combination bands up to four quanta of excitation for H12C13CD, H13C12CD and 13C12CD2 (6130-6800 cm-1). In case of symmetric top molecules, CH3CCH has been investigated in the 2nu1 region (6200-6700 cm-1), which is particularly congested due to the huge network of states affected by Coriolis and anharmonic interactions. The bending fundamentals of 15ND3 (450-2700 cm-1) have been studied for the first time, characterizing completely the bending states, v2 = 1 and v4 = 1, whereas the analysis of the stretching modes, which evidenced the presence of several perturbations, has been started. Finally, the fundamental band nu4 of CF3Br in the 1190-1220 cm-1 region has been investigated. Transitions belonging to the CF379Br and CF381Br molecules have been identified since the spectra were recorded using a sample containing the two isotopologues in natural abundance. This allowed the characterization of the v4 = 1 state for both isotopologues and the evaluation of the bromine isotopic splitting.
Resumo:
We have used high-resolution spectra, acquired with UVES@ESO-VLT, to determine the chemical abundances of different samples of AGB and RGB stars in 4 Galactic globular clusters, namely 47Tuc, NGC3201, M22 and M62. For almost all the analyzed AGB stars we found a clear discrepancy between the iron abundance measured from neutral lines and that obtained from single ionized lines, while this discrepancy is not obtained for the RGB samples observed in the same clusters and analyzed with the same procedure. Such a behavior exactly corresponds to what expected in the case of Non-Local Thermodynamical Equilibrium (NLTE) in the star atmosphere. These results have a huge impact on the proper determination of GC chemistry. In fact, one of the most intriguing consequences is that, at odds with previous claims, no iron spread is found in NGC3201 and M22 if the iron abundance is obtained from ionized lines only.