9 resultados para high power induction machine

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The ever-increasing spread of automation in industry puts the electrical engineer in a central role as a promoter of technological development in a sector such as the use of electricity, which is the basis of all the machinery and productive processes. Moreover the spread of drives for motor control and static converters with structures ever more complex, places the electrical engineer to face new challenges whose solution has as critical elements in the implementation of digital control techniques with the requirements of inexpensiveness and efficiency of the final product. The successfully application of solutions using non-conventional static converters awake an increasing interest in science and industry due to the promising opportunities. However, in the same time, new problems emerge whose solution is still under study and debate in the scientific community During the Ph.D. course several themes have been developed that, while obtaining the recent and growing interest of scientific community, have much space for the development of research activity and for industrial applications. The first area of research is related to the control of three phase induction motors with high dynamic performance and the sensorless control in the high speed range. The management of the operation of induction machine without position or speed sensors awakes interest in the industrial world due to the increased reliability and robustness of this solution combined with a lower cost of production and purchase of this technology compared to the others available in the market. During this dissertation control techniques will be proposed which are able to exploit the total dc link voltage and at the same time capable to exploit the maximum torque capability in whole speed range with good dynamic performance. The proposed solution preserves the simplicity of tuning of the regulators. Furthermore, in order to validate the effectiveness of presented solution, it is assessed in terms of performance and complexity and compared to two other algorithm presented in literature. The feasibility of the proposed algorithm is also tested on induction motor drive fed by a matrix converter. Another important research area is connected to the development of technology for vehicular applications. In this field the dynamic performances and the low power consumption is one of most important goals for an effective algorithm. Towards this direction, a control scheme for induction motor that integrates within a coherent solution some of the features that are commonly required to an electric vehicle drive is presented. The main features of the proposed control scheme are the capability to exploit the maximum torque in the whole speed range, a weak dependence on the motor parameters, a good robustness against the variations of the dc-link voltage and, whenever possible, the maximum efficiency. The second part of this dissertation is dedicated to the multi-phase systems. This technology, in fact, is characterized by a number of issues worthy of investigation that make it competitive with other technologies already on the market. Multiphase systems, allow to redistribute power at a higher number of phases, thus making possible the construction of electronic converters which otherwise would be very difficult to achieve due to the limits of present power electronics. Multiphase drives have an intrinsic reliability given by the possibility that a fault of a phase, caused by the possible failure of a component of the converter, can be solved without inefficiency of the machine or application of a pulsating torque. The control of the magnetic field spatial harmonics in the air-gap with order higher than one allows to reduce torque noise and to obtain high torque density motor and multi-motor applications. In one of the next chapters a control scheme able to increase the motor torque by adding a third harmonic component to the air-gap magnetic field will be presented. Above the base speed the control system reduces the motor flux in such a way to ensure the maximum torque capability. The presented analysis considers the drive constrains and shows how these limits modify the motor performance. The multi-motor applications are described by a well-defined number of multiphase machines, having series connected stator windings, with an opportune permutation of the phases these machines can be independently controlled with a single multi-phase inverter. In this dissertation this solution will be presented and an electric drive consisting of two five-phase PM tubular actuators fed by a single five-phase inverter will be presented. Finally the modulation strategies for a multi-phase inverter will be illustrated. The problem of the space vector modulation of multiphase inverters with an odd number of phases is solved in different way. An algorithmic approach and a look-up table solution will be proposed. The inverter output voltage capability will be investigated, showing that the proposed modulation strategy is able to fully exploit the dc input voltage either in sinusoidal or non-sinusoidal operating conditions. All this aspects are considered in the next chapters. In particular, Chapter 1 summarizes the mathematical model of induction motor. The Chapter 2 is a brief state of art on three-phase inverter. Chapter 3 proposes a stator flux vector control for a three- phase induction machine and compares this solution with two other algorithms presented in literature. Furthermore, in the same chapter, a complete electric drive based on matrix converter is presented. In Chapter 4 a control strategy suitable for electric vehicles is illustrated. Chapter 5 describes the mathematical model of multi-phase induction machines whereas chapter 6 analyzes the multi-phase inverter and its modulation strategies. Chapter 7 discusses the minimization of the power losses in IGBT multi-phase inverters with carrier-based pulse width modulation. In Chapter 8 an extended stator flux vector control for a seven-phase induction motor is presented. Chapter 9 concerns the high torque density applications and in Chapter 10 different fault tolerant control strategies are analyzed. Finally, the last chapter presents a positioning multi-motor drive consisting of two PM tubular five-phase actuators fed by a single five-phase inverter.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Department of Mechanical and Civil Engineering (DIMeC) of the University of Modena and Reggio Emilia is developing a new type of small capacity HSDI 2-Stroke Diesel engine (called HSD2), featuring a specifically designed combustion system, aimed to reduce weight, size and manufacturing costs, and improving pollutant emissions at partial load. The present work is focused on the analysis of the combustion and the scavenging process, investigated by means of a version of the KIVA-3V code customized by the University of Chalmers and modified by DIMeC. The customization of the KIVA-3V code includes a detailed combustion chemistry approach, coupled with a comprehensive oxidation mechanism for diesel oil surrogate and the modeling of turbulence/chemistry interaction through the PaSR (Partially Stirred Reactor) model. A four stroke automobile Diesel engine featuring a very close bore size is taken as a reference, for both the numerical models calibration and for a comparison with the 2-Stroke engine. Analysis is carried out trough a comparison between HSD2 and FIAT 1300 MultiJet in several operating conditions, at full and partial load. Such a comparison clearly demonstrates the effectiveness of the two stroke concept in terms of emissions reduction and high power density. However, HSD2 is still a virtual engine, and experimental results are needed to assume the reliability of numerical results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The running innovation processes of the microwave transistor technologies, used in the implementation of microwave circuits, have to be supported by the study and development of proper design methodologies which, depending on the applications, will fully exploit the technology potentialities. After the choice of the technology to be used in the particular application, the circuit designer has few degrees of freedom when carrying out his design; in the most cases, due to the technological constrains, all the foundries develop and provide customized processes optimized for a specific performance such as power, low-noise, linearity, broadband etc. For these reasons circuit design is always a “compromise”, an investigation for the best solution to reach a trade off between the desired performances. This approach becomes crucial in the design of microwave systems to be used in satellite applications; the tight space constraints impose to reach the best performances under proper electrical and thermal de-rated conditions, respect to the maximum ratings provided by the used technology, in order to ensure adequate levels of reliability. In particular this work is about one of the most critical components in the front-end of a satellite antenna, the High Power Amplifier (HPA). The HPA is the main power dissipation source and so the element which mostly engrave on space, weight and cost of telecommunication apparatus; it is clear from the above reasons that design strategies addressing optimization of power density, efficiency and reliability are of major concern. Many transactions and publications demonstrate different methods for the design of power amplifiers, highlighting the availability to obtain very good levels of output power, efficiency and gain. Starting from existing knowledge, the target of the research activities summarized in this dissertation was to develop a design methodology capable optimize power amplifier performances complying all the constraints imposed by the space applications, tacking into account the thermal behaviour in the same manner of the power and the efficiency. After a reminder of the existing theories about the power amplifier design, in the first section of this work, the effectiveness of the methodology based on the accurate control of the dynamic Load Line and her shaping will be described, explaining all steps in the design of two different kinds of high power amplifiers. Considering the trade-off between the main performances and reliability issues as the target of the design activity, we will demonstrate that the expected results could be obtained working on the characteristics of the Load Line at the intrinsic terminals of the selected active device. The methodology proposed in this first part is based on the assumption that designer has the availability of an accurate electrical model of the device; the variety of publications about this argument demonstrates that it is so difficult to carry out a CAD model capable to taking into account all the non-ideal phenomena which occur when the amplifier operates at such high frequency and power levels. For that, especially for the emerging technology of Gallium Nitride (GaN), in the second section a new approach for power amplifier design will be described, basing on the experimental characterization of the intrinsic Load Line by means of a low frequency high power measurements bench. Thanks to the possibility to develop my Ph.D. in an academic spin-off, MEC – Microwave Electronics for Communications, the results of this activity has been applied to important research programs requested by space agencies, with the aim support the technological transfer from universities to industrial world and to promote a science-based entrepreneurship. For these reasons the proposed design methodology will be explained basing on many experimental results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis presents the outcomes of a Ph.D. course in telecommunications engineering. It is focused on the optimization of the physical layer of digital communication systems and it provides innovations for both multi- and single-carrier systems. For the former type we have first addressed the problem of the capacity in presence of several nuisances. Moreover, we have extended the concept of Single Frequency Network to the satellite scenario, and then we have introduced a novel concept in subcarrier data mapping, resulting in a very low PAPR of the OFDM signal. For single carrier systems we have proposed a method to optimize constellation design in presence of a strong distortion, such as the non linear distortion provided by satellites' on board high power amplifier, then we developed a method to calculate the bit/symbol error rate related to a given constellation, achieving an improved accuracy with respect to the traditional Union Bound with no additional complexity. Finally we have designed a low complexity SNR estimator, which saves one-half of multiplication with respect to the ML estimator, and it has similar estimation accuracy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis starts showing the main characteristics and application fields of the AlGaN/GaN HEMT technology, focusing on reliability aspects essentially due to the presence of low frequency dispersive phenomena which limit in several ways the microwave performance of this kind of devices. Based on an equivalent voltage approach, a new low frequency device model is presented where the dynamic nonlinearity of the trapping effect is taken into account for the first time allowing considerable improvements in the prediction of very important quantities for the design of power amplifier such as power added efficiency, dissipated power and internal device temperature. An innovative and low-cost measurement setup for the characterization of the device under low-frequency large-amplitude sinusoidal excitation is also presented. This setup allows the identification of the new low frequency model through suitable procedures explained in detail. In this thesis a new non-invasive empirical method for compact electrothermal modeling and thermal resistance extraction is also described. The new contribution of the proposed approach concerns the non linear dependence of the channel temperature on the dissipated power. This is very important for GaN devices since they are capable of operating at relatively high temperatures with high power densities and the dependence of the thermal resistance on the temperature is quite relevant. Finally a novel method for the device thermal simulation is investigated: based on the analytical solution of the tree-dimensional heat equation, a Visual Basic program has been developed to estimate, in real time, the temperature distribution on the hottest surface of planar multilayer structures. The developed solver is particularly useful for peak temperature estimation at the design stage when critical decisions about circuit design and packaging have to be made. It facilitates the layout optimization and reliability improvement, allowing the correct choice of the device geometry and configuration to achieve the best possible thermal performance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The laser driven ion acceleration is a burgeoning field of resarch and is attracting a growing number of scientists since the first results reported in 2000 obtained irradiating thin solid foils by high power laser pulses. The growing interest is driven by the peculiar characteristics of the produced bunches, the compactness of the whole accelerating system and the very short accelerating length of this all-optical accelerators. A fervent theoretical and experimental work has been done since then. An important part of the theoretical study is done by means of numerical simulations and the most widely used technique exploits PIC codes (“Particle In Cell'”). In this thesis the PIC code AlaDyn, developed by our research group considering innovative algorithms, is described. My work has been devoted to the developement of the code and the investigation of the laser driven ion acceleration for different target configurations. Two target configurations for the proton acceleration are presented together with the results of the 2D and 3D numerical investigation. One target configuration consists of a solid foil with a low density layer attached on the irradiated side. The nearly critical plasma of the foam layer allows a very high energy absorption by the target and an increase of the proton energy up to a factor 3, when compared to the ``pure'' TNSA configuration. The differences of the regime with respect to the standard TNSA are described The case of nearly critical density targets has been investigated with 3D simulations. In this case the laser travels throughout the plasma and exits on the rear side. During the propagation, the laser drills a channel and induce a magnetic vortex that expanding on the rear side of the targer is source of a very intense electric field. The protons of the plasma are strongly accelerated up to energies of 100 MeV using a 200PW laser.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

III-nitrides are wide-band gap materials that have applications in both electronics and optoelectronic devices. Because to their inherent strong polarization properties, thermal stability and higher breakdown voltage in Al(Ga,In)N/GaN heterostructures, they have emerged as strong candidates for high power high frequency transistors. Nonetheless, the use of (Al,In)GaN/GaN in solid state lighting has already proved its success by the commercialization of light-emitting diodes and lasers in blue to UV-range. However, devices based on these heterostructures suffer problems associated to structural defects. This thesis primarily focuses on the nanoscale electrical characterization and the identification of these defects, their physical origin and their effect on the electrical and optical properties of the material. Since, these defects are nano-sized, the thesis deals with the understanding of the results obtained by nano and micro-characterization techniques such as atomic force microscopy(AFM), current-AFM, scanning kelvin probe microscopy (SKPM), electron beam induced current (EBIC) and scanning tunneling microscopy (STM). This allowed us to probe individual defects (dislocations and cracks) and unveil their electrical properties. Taking further advantage of these techniques,conduction mechanism in two-dimensional electron gas heterostructures was well understood and modeled. Secondarily, origin of photoluminescence was deeply investigated. Radiative transition related to confined electrons and photoexcited holes in 2DEG heterostructures was identified and many body effects in nitrides under strong optical excitations were comprehended.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Lo studio presentato in questa sede concerne applicazioni di saldatura LASER caratterizzate da aspetti di non-convenzionalità ed è costituito da tre filoni principali. Nel primo ambito di intervento è stata valutata la possibilità di effettuare saldature per fusione, con LASER ad emissione continua, su pannelli Aluminum Foam Sandwich e su tubi riempiti in schiuma di alluminio. Lo studio ha messo in evidenza numerose linee operative riguardanti le problematiche relative alla saldatura delle pelli esterne dei componenti ed ha dimostrato la fattibilità relativa ad un approccio di giunzione LASER integrato (saldatura seguita da un post trattamento termico) per la realizzazione della giunzione completa di particolari tubolari riempiti in schiuma con ripristino della struttura cellulare all’interfaccia di giunzione. Il secondo ambito di intervento è caratterizzato dall’applicazione di una sorgente LASER di bassissima potenza, operante in regime ad impulsi corti, nella saldatura di acciaio ad elevato contenuto di carbonio. Lo studio ha messo in evidenza come questo tipo di sorgente, solitamente applicata per lavorazioni di ablazione e marcatura, possa essere applicata anche alla saldatura di spessori sub-millimetrici. In questa fase è stato messo in evidenza il ruolo dei parametri di lavoro sulla conformazione del giunto ed è stata definita l’area di fattibilità del processo. Lo studio è stato completato investigando la possibilità di applicare un trattamento LASER dopo saldatura per addolcire le eventuali zone indurite. In merito all’ultimo ambito di intervento l’attività di studio si è focalizzata sull’utilizzo di sorgenti ad elevata densità di potenza (60 MW/cm^2) nella saldatura a profonda penetrazione di acciai da costruzione. L’attività sperimentale e di analisi dei risultati è stata condotta mediante tecniche di Design of Experiment per la valutazione del ruolo preciso di tutti i parametri di processo e numerose considerazioni relative alla formazione di cricche a caldo sono state suggerite.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

L’attività di ricerca della presente tesi di dottorato ha riguardato sistemi tribologici complessi di interesse industriale per i quali sono stati individuati, mediante failure analysis, i meccanismi di usura dominanti. Per ciascuno di essi sono state studiate soluzioni migliorative sulla base di prove tribologiche di laboratorio. Nella realizzazione di maglie per macchine movimentazione terra sono ampiamente utilizzati i tradizionali acciai da bonifica. La possibilità di utilizzare i nuovi microlegati a medio tenore di carbonio, consentirebbe una notevole semplificazione del ciclo produttivo e benefici in termini di costi. Una parte della tesi ha riguardato lo studio del comportamento tribologico di tali acciai. E’ stato anche affrontato lo studio tribologico di motori idraulici, con l’obiettivo di riuscire a migliorarne la resistenza ad usura e quindi la vita utile. Sono state eseguite prove a banco, per valutare i principali meccanismi di usura, e prove di laboratorio atte a riprodurre le reali condizioni di utilizzo, valutando tecniche di modificazione superficiale che fossero in grado di ridurre l’usura dei componenti. Sono state analizzate diverse tipologie di rivestimenti Thermal Spray in termini di modalità di deposizione (AFS-APS) e di leghe metalliche depositate (Ni,Mo,Cu/Al). Si sono infine caratterizzati contatti tribologici nel settore del packaging, dove l’utilizzo di acciai inox austenitici è in alcuni casi obbligatorio. L’acciaio inossidabile AISI 316L è ampiamente utilizzato in applicazioni in cui siano richieste elevate resistenze alla corrosione, tuttavia la bassa resistenza all’usura, ne limitano l’impiego in campo tribologico. In tale ambito, è stata analizzata una problematica tribologica relativa a macchine automatiche per il dosaggio di polveri farmaceutiche. Sono state studiate soluzioni alternative che hanno previsto sia la completa sostituzione dei materiali della coppia tribologica, sia l’individuazione di tecniche di modificazione superficiale innovative quali la cementazione a bassa temperatura anche seguita dalla deposizione di un rivestimento di carbonio amorfo idrogenato a-C:H