6 resultados para high performance liquid chromatography with diode array detection

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis work aims to develop original analytical methods for the determination of drugs with a potential for abuse, for the analysis of substances used in the pharmacological treatment of drug addiction in biological samples and for the monitoring of potentially toxic compounds added to street drugs. In fact reliable analytical techniques can play an important role in this setting. They can be employed to reveal drug intake, allowing the identification of drug users and to assess drug blood levels, assisting physicians in the management of the treatment. Pharmacological therapy needs to be carefully monitored indeed in order to optimize the dose scheduling according to the specific needs of the patient and to discourage improper use of the medication. In particular, different methods have been developed for the detection of gamma-hydroxybutiric acid (GHB), prescribed for the treatment of alcohol addiction, of glucocorticoids, one of the most abused pharmaceutical class to enhance sport performance and of adulterants, pharmacologically active compounds added to illicit drugs for recreational purposes. All the presented methods are based on capillary electrophoresis (CE) and high performance liquid chromatography (HPLC) coupled to various detectors (diode array detector, mass spectrometer). Biological samples pre-treatment was carried out using different extraction techniques, liquid-liquid extraction (LLE) and solid phase extraction (SPE). Different matrices have been considered: human plasma, dried blood spots, human urine, simulated street drugs. These developed analytical methods are individually described and discussed in this thesis work.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Drug abuse is a major global problem which has a strong impact not only on the single individual but also on the entire society. Among the different strategies that can be used to address this issue an important role is played by identification of abusers and proper medical treatment. This kind of therapy should be carefully monitored in order to discourage improper use of the medication and to tailor the dose according to the specific needs of the patient. Hence, reliable analytical methods are needed to reveal drug intake and to support physicians in the pharmacological management of drug dependence. In the present Ph.D. thesis original analytical methods for the determination of drugs with a potential for abuse and of substances used in the pharmacological treatment of drug addiction are presented. In particular, the work has been focused on the analysis of ketamine, naloxone and long-acting opioids (buprenorphine and methadone), oxycodone, disulfiram and bupropion in human plasma and in dried blood spots. The developed methods are based on the use of high performance liquid chromatography (HPLC) coupled to various kinds of detectors (mass spectrometer, coulometric detector, diode array detector). For biological sample pre-treatment different techniques have been exploited, namely solid phase extraction and microextraction by packed sorbent. All the presented methods have been validated according to official guidelines with good results and some of these have been successfully applied to the therapeutic drug monitoring of patients under treatment for drug abuse.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Food technologies today mean reducing agricultural food waste, improvement of food security, enhancement of food sensory properties, enlargement of food market and food economies. Food technologists must be high-skilled technicians with good scientific knowledge of food hygiene, food chemistry, industrial technologies and food engineering, sensory evaluation experience and analytical chemistry. Their role is to apply the modern vision of science in the field of human nutrition, rising up knowledge in food science. The present PhD project starts with the aim of studying and improving frozen fruits quality. Freezing process in very powerful in preserve initial raw material characteristics, but pre-treatment before the freezing process are necessary to improve quality, in particular to improve texture and enzymatic activity of frozen foods. Osmotic Dehydration (OD) and Vacuum Impregnation (VI), are useful techniques to modify fruits and vegetables composition and prepare them to freezing process. These techniques permit to introduce cryo-protective agent into the food matrices, without significant changes of the original structure, but cause a slight leaching of important intrinsic compounds. Phenolic and polyphenolic compounds for example in apples and nectarines treated with hypertonic solutions are slightly decreased, but the effect of concentration due to water removal driven out from the osmotic gradient, cause a final content of phenolic compounds similar to that of the raw material. In many experiment, a very important change in fruit composition regard the aroma profile. This occur in strawberries osmo-dehydrated under vacuum condition or under atmospheric pressure condition. The increment of some volatiles, probably due to fermentative metabolism induced by the osmotic stress of hypertonic treatment, induce a sensory profile modification of frozen fruits, that in some way result in a better acceptability of consumer, that prefer treated frozen fruits to untreated frozen fruits. Among different processes used, a very interesting result was obtained with the application of a osmotic pre-treatment driven out at refrigerated temperature for long time. The final quality of frozen strawberries was very high and a peculiar increment of phenolic profile was detected. This interesting phenomenon was probably due to induction of phenolic biological synthesis (for example as reaction to osmotic stress), or to hydrolysis of polymeric phenolic compounds. Aside this investigation in the cryo-stabilization and dehydrofreezing of fruits, deeper investigation in VI techniques were carried out, as studies of changes in vacuum impregnated prickly pear texture, and in use of VI and ultrasound (US) in aroma enrichment of fruit pieces. Moreover, to develop sensory evaluation tools and analytical chemistry determination (of volatiles and phenolic compounds), some researches were bring off and published in these fields. Specifically dealing with off-flavour development during storage of boiled potato, and capillary zonal electrophoresis (CZE) and high performance liquid chromatography (HPLC) determination of phenolic compounds.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cultural heritage is constituted by complex and heterogenous materials, such as paintings but also ancient remains. However, all ancient materials are exposed to external environment and their interaction produces different changes due to chemical, physical and biological phenomena. The organic fraction, especially the proteinaceous one, has a crucial role in all these materials: in archaeology proteins reveal human habits, in artworks they disclose technics and help for a correct restoration. For these reasons the development of methods that allow the preservation of the sample as much as possible and a deeper knowledge of the deterioration processes is fundamental. The research activities presented in this PhD thesis have been focused on the development of new immunochemical and spectroscopic approaches in order to detect and identify organic substances in artistic and archaeological samples. Organic components could be present in different cultural heritage materials as constituent element (e.g., binders in paintings, collagen in bones) and their knowledge is fundamental for a complete understanding of past life, degradation processes and appropriate restauration approaches. The combination of immunological approach with a chemiluminescence detection and Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry allowed a sensitive and selective localization of collagen and elements in ancient bones and teeth. Near-infrared spectrometer and hyper spectral imaging have been applied in combination with chemometric data analysis as non-destructive methods for bones prescreening for the localization of collagen. Moreover, an investigation of amino acids in enamel has been proposed, in order to clarify teeth biomolecules survival overtime through the optimization and application of High-Performance Liquid Chromatography on modern and ancient enamel powder. New portable biosensors were developed for ovalbumin identification in paintings, thanks to the combination between biocompatible Gellan gel and electro-immunochemical sensors, to extract and identify painting binders with the contact only between gel and painting and between gel and electrodes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this Ph.D. project, original and innovative approaches for the quali-quantitative analysis of abuse substances, as well as therapeutic agents with abuse potential and related compounds were designed, developed and validated for application to different fields such as forensics, clinical and pharmaceutical. All the parameters involved in the developed analytical workflows were properly and accurately optimised, from sample collection to sample pretreatment up to the instrumental analysis. Advanced dried blood microsampling technologies have been developed, able of bringing several advantages to the method as a whole, such as significant reduction of solvent use, feasible storage and transportation conditions and enhancement of analyte stability. At the same time, the use of capillary blood allows to increase subject compliance and overall method applicability by exploiting such innovative technologies. Both biological and non-biological samples involved in this project were subjected to optimised pretreatment techniques developed ad-hoc for each target analyte, making also use of advanced microextraction techniques. Finally, original and advanced instrumental analytical methods have been developed based on high and ultra-high performance liquid chromatography (HPLC,UHPLC) coupled to different detection means (mainly mass spectrometry, but also electrochemical, and spectrophotometric detection for screening purpose), and on attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR) for solid-state analysis. Each method has been designed to obtain highly selective, sensitive yet sustainable systems and has been validated according to international guidelines. All the methods developed herein proved to be suitable for the analysis of the compounds under investigation and may be useful tools in medicinal chemistry, pharmaceutical analysis, within clinical studies and forensic investigations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hydrogen sulfide (H2S) is a widely recognized gasotransmitter, with key roles in physiological and pathological processes. The accurate quantification of H2S and reactive sulfur species (RSS) may hold important implications for the diagnosis and prognosis of various diseases. However, H2S species quantification in biological matrices is still a challenge. Among the sulfide detection methods, monobromobimane (MBB) derivatization coupled with reversed phase high-performance liquid chromatography (RP-HPLC) is one of the most reported. However, it is characterized by a complex preparation and time-consuming process, which may alter the actual H2S level. Moreover, quantitative validation has still not been described based on a survey of previously published works. In this study, we developed and validated an improved analytical protocol for the MBB RP-HPLC method. Main parameters like MBB concentration, temperature, reaction time, and sample handling were optimized, and the calibration method was further validated using leave-one-out cross-validation (CV) and tested in a clinical setting. The method shows high sensitivity and allows the quantification of H2S species, with a limit of detection (LOD) of 0.5 µM and a limit of quantification (LOQ) of 0.9 µM. Additionally, this model was successfully applied in measurements of H2S levels in the serum of patients subjected to inhalation with vapors rich in H2S. In addition, a properly procedure was established for H2S release with the modified MBB HPLC-FLD method. The proposed analytical approach demonstrated the slow-release kinetics of H2S from the multilayer Silk-Fibroin scaffolds with the combination of different H2S donor’s concentration with respect to the weight of PLGA nanofiber. In the end, some efforts were made on sulfide measurements by using size exclusion chromatography fluorescence/ultraviolet detection and inductively coupled plasma-mass spectrometry (SEC-FLD/UV-ICP/MS). It’s intended as a preliminary study in order to define the feasibility of a separation-detection-quantification platform to analyze biological samples and quantify sulfur species.