3 resultados para hair analysis
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
Hair cortisol is a novel marker to measure long-term secretion cortisol free from many methodological caveats associated with other matrices such as plasma, saliva, urine, milk and faeces. For decades hair analysis has been successfully used in forensic science and toxicology to evaluate the exposure to exogenous substances and assess endogenous steroid hormones. Evaluation of cortisol in hair matrix began about a decade ago and have over the past five years had a remarkable development by advancing knowledge and affirming this method as a new and efficient way to study the hypothalamic-pituitary-adrenal (HPA) axis activity over a long time period. In farm animals, certain environmental or management conditions can potentially activate the HPA axis. Given the importance of cortisol in monitoring the HPA axis activity, a first approach has involved the study on the distribution of hair cortisol concentrations (HCC) in healthy dairy cows showing a physiological range of variation of this hormone. Moreover, HCC have been significantly influenced also by changes in environmental conditions and a significant positive correlation was detected between HCC and cows clinically or physiologically compromised suggesting that these cows were subjected to repeated HPA axis activation. Additionally, Crossbreed F1 heifers showed significantly lower HCC compared to pure animals and a breed influence has been seen also on the HPA axis activity stimulated by an environmental change showing thus a higher level of resilience and a better adaptability to the environment of certain genotypes. Hair proved to be an excellent matrix also in the study of the activation of the HPA axis during the perinatal period. The use of hair analysis in research holds great promise to significantly enhance current understanding on the role of HPA axis over a long period of time.
Resumo:
Introduction. The term New Psychoactive Substances (NPS) encompasses a broad category of drugs which have become available on the market in recent years and whose illicit use for recreational purposes has recently exploded. The analysis of NPS usually requires mass spectrometry based techniques. The aim of our study was to define the preva-lence of NPS consumption in patients with a history of drug addiction followed by Public Services for Pathological Addictions, with the purpose of highlighting the effective presence of NPS within the area of Bologna and evaluating their association with classical drugs of abuse (DOA). Materials and methods. Sustained by literature, a multi-analyte UHPLC-MS/MS method for the identification of 127 NPS (phenethylamines, arylcyclohexylamines, synthetic opioids, tryptamines, synthetic cannabinoids, synthetic cathinones, designer benzodiazepines) and 15 classic drugs of abuse (DOA) in hair samples was developed and validated according to International Guidelines [112]. Samples pretreatment consisted of washing steps and overnight incubation at 45°C in an acid mixture of methanol and water. After cooling, supernatant were injected into the chromatographic system coupled with a tandem mass spectrometry detector. Results. Successful validation was achieved for almost all of the compounds. The method met all the required technical parameters. LOQ was set from 4 to 80 pg/mg The developed method was applied to 107 cases (85 males and 22 females) of clinical interest. Out of 85 hair samples resulting positive to classical drugs of abuse, NPS were found in twelve (8 male and 4 female). Conclusion. The present methodology represents an easy, low cost, wide-panel method for the de-tection of 127 NPS and 15 DOA in hair samples. Such multi-analyte methods facilitates the study of the prevalence of drugs abused that will enable the competent control authorities to obtain evi-dence-based reports regarding the critical spread of the threat represented by NPS.
Resumo:
The domestication and selection processes in pigs and rabbits have resulted in the constitution of multiple breeds with broad phenotypic diversity. Population genomics analysis and Genome-wide association study analysis can be utilized to gain insights into the ancestral origins, genetic diversity, and the presence of lethal mutations across these diverse breeds. In this thesis, we analysed the dataset obtained from three Italian Pig breeds to detect deleterious alleles. We screened the dataset for genetic markers showing homozygous deficiency using two approaches single marker and haplotype-based approach. Moreover, Genome-wide association study analyses were performed to detect genetic markers associated with pigs' reproductive traits. In rabbits, we investigated the application of SNP bead chip for detection signatures of selection in rabbits using different methods. This analysis was implemented for the first time in different fancy and meet rabbit breeds. Multiple approaches were utilized for the detection of the selection of signatures including Fst analysis, ROH analysis, PCAdapt analysis, and haplotype-based analysis. The analysis in pigs was able to identify five putative deleterious SNPs and nine putative deleterious haplotypes in the analysed Italian Pig breeds. The genomic regions of the detected putative deleterious genomic markers harboring loss of function variants such as the Frameshift variant, start lost, and splice donor variant. Those variants are close to important candidate genes such as IGF2BP1, ADGRL4, and HGF. In rabbits, multiple genomic regions were detected to be under selection of signature. These genomic regions harbor candidate genes associated with coat color phenotype (MC1R, TYR, and ASIP), hair structure (LIPH), and body size (HMGA2 and COL2A1). The described results in rabbits and pigs could be used to improve breeding programs by excluding the deleterious genetic markers carriers and incorporating candidate genes for coat color, body size, and meat production in rabbit breeding programs to enhance desired traits