10 resultados para growth response
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
The aim of this thesis was to investigate some important key factors able to promote the prospected growth of the aquaculture sector. The limited availability of fishmeal and fish oil led the attention of the aquafeed industry to reduce the dependency on marine raw materials in favor of vegetable ingredients. In Chapter 2, we reported the effects of fishmeal replacement by a mixture of plant proteins in turbot (Psetta maxima L.) juveniles. At the end of the trial, it was found that over the 15% plant protein inclusion can cause stress and exert negative effects on growth performance and welfare. Climate change aroused the attention of the aquafeed industry toward the production of specific diets capable to counteract high temperatures. In Chapter 3, we investigated the most suitable dietary lipid level for gilthead seabream (Sparus aurata L.) reared at Mediterranean summer temperature. In this trial, it was highlighted that 18% dietary lipid allows a protein sparing effect, thus making the farming of this species economically and environmentally more sustainable. The introduction of new farmed fish species makes necessary the development of new species-specific diets. In Chapter 4, we assessed growth response and feed utilization of common sole (Solea solea L.) juveniles fed graded dietary lipid levels. At the end of the trial, it was found that increasing dietary lipids over 8% led to a substantial decline in growth performance and feed utilization indices. In Chapter 5, we investigated the suitability of mussel meal as alternative ingredient in diets for common sole juveniles. Mussel meal proved to be a very effective alternative ingredient for enhancing growth performance, feed palatability and feed utilization in sole irrespectively to the tested inclusion levels. This thesis highlighted the importance of formulating more specific diets in order to support the aquaculture growth in a sustainable way.
Resumo:
Theory of aging postulates that aging is a remodeling process where the body of survivors progressively adapts to internal and external damaging agents they are exposed to during several decades. Thus , stress response and adaptation mechanisms play a fundamental role in the aging process where the capability of adaptating effects, certainly, also is related the lifespan of each individual. A key gene linking aging to stress response is indeed p21, an induction of cyclin-dependent kinase inhibitor which triggers cell growth arrest associated with senescence and damage response and notably is involved in the up-regulation of multiple genes that have been associated with senescence or implicated in age-related . This PhD thesis project that has been performed in collaboration with the Roninson Lab at Ordway Research Institute in Albany, NY had two main aims: -the testing the hypothesis that p21 polymorphisms are involved in longevity -Evaluating age-associated differences in gene expression and transcriptional response to p21 and DNA damage In the first project, trough PCR-sequencing and Sequenom strategies, we we found out that there are about 30 polymorphic variants in the p21 gene. In addition, we found an haplotpype located in -5kb region of the p21 promoter whose frequency is ~ 2 fold higher in centenarians than in the general population (Large-scale analysis of haplotype frequencies is currently in progress). Functional studies I carried out on the promoter highilighted that the ―centenarian‖ haplotype doesn’t affect the basal p21 promoter activity or its response to p53. However, there are many other possible physiological conditions in which the centenarian allele of the p21 promoter may potentially show a different response (IL6, IFN,progesterone, vitamin E, Vitamin D etc). In the second part, project #2, trough Microarrays we seeked to evaluate the differences in gene expression between centenarians, elderly, young in dermal fibroblast cultures and their response to p21 and DNA damage. Microarray analysis of gene expression in dermal fibroblast cultures of individuals of different ages yielded a tentative "centenarian signature". A subset of genes that were up- or downregulated in centenarians showed the same response to ectopic expression of p21, yielding a putative "p21-centenarian" signature. Trough RQ-PCR (as well Microarrays studies whose analysis is in progress) we tested the DNA damage response of the p21-centenarian signature genes showing a correlation stress/aging in additional sets of young and old samples treated with p21-inducing drug doxorubicin thus finding for a subset of of them , a response to stress age-related.
Resumo:
A large body of literature documents in both mice and Drosophila the involvement of Insulin pathway in growth regulation, probably due to its role in glucose and lipid import, nutrient storage, and translation of RNAs implicated in ribosome biogenesis (Vanhaesebroeck et al. 2001). Moreover several lines of evidence implicate this pathway as a causal factor in cancer (Sale, 2008; Zeng and Yee 2007; Hursting et al., 2007; Chan et al., 2008). With regards to Myc, studies in cell culture have implied this family of transcription factors as regulators of the cell cycle that are rapidly induced in response to growth factors. Myc is a potent oncogene, rearranged and overexpressed in a wide range of human tumors and necessary during development. Its conditional knock-out in mice results in reduction of body weight due to defect in cell proliferation (Trumpp et al. 2001). Evidence from in vivo studies in Drosophila and mammals suggests a critical function for myc in cell growth regulation (Iritani and Eisenman 1999; Johnston et al. 1999; Kim et al. 2000; de Alboran et al. 2001; Douglas et al. 2001). This role is supported by our analysis of Myc target genes in Drosophila, which include genes involved in RNA binding, processing, ribosome biogenesis and nucleolar function (Orain et al 2003, Bellosta et al., 2005, Hulf et al, 2005). The fact that Insulin signaling and Myc have both been associated with growth control suggests that they may interact with each other. However, genetic evidence suggesting that Insulin signaling regulates Myc in vivo is lacking. In this work we were able to show, for the first time, a direct modulation of dMyc in response to Insulin stimulation/silencing both in vitro and in vivo. Our results suggest that dMyc up-regulation in response to DILPs signaling occurs both at the mRNA and potein level. We believe dMyc protein accumulation after Insulin signaling activation is conditioned to AKT-dependent GSK3β/sgg inactivation. In fact, we were able to demonstate that dMyc protein stabilization through phosphorylation is a conserved feature between Drosophila and vertebrates and requires multiple events. The final phosphorylation step, that results in a non-stable form of dMyc protein, ready to be degraded by the proteasome, is performed by GSK3β/sgg kinase (Sears, 2004). At the same time we demonstrated that CKI family of protein kinase are required to prime dMyc phosphorylation. DILPs and TOR/Nutrient signalings are known to communicate at several levels (Neufeld, 2003). For this reason we further investigated TOR contribution to dMyc-dependent growth regulation. dMyc protein accumulates in S2 cells after aminoacid stimulation, while its mRNA does not seem to be affected upon TORC1 inhibition, suggesting that the Nutrient pathway regulates dMyc mostly post-transcriptionally. In support to this hypothesis, we observed a TORC1-dependent GSK3β/sgg inactivation, further confirming a synergic effect of DILPs and Nutrients on dMyc protein stability. On the other hand, our data show that Rheb but not S6K, both downstream of the TOR kinase, contributes to the dMyc-induced growth of the eye tissue, suggesting that Rheb controls growth independently of S6K.. Moreover, Rheb seems to be able to regulate organ size during development inducing cell death, a mechanism no longer occurring in absence of dmyc. These observations suggest that Rheb might control growth through a new pathway independent of TOR/S6K but still dependent on dMyc. In order to dissect the mechanism of dMyc regulation in response to these events, we analyzed the relative contribution of Rheb, TOR and S6K to dMyc expression, biochemically in S2 cells and in vivo in morphogenetic clones and we further confirmed an interplay between Rheb and Myc that seems to be indipendent from TOR. In this work we clarified the mechanisms that stabilize dMyc protein in vitro and in vivo and we observed for the first time dMyc responsiveness to DILPs and TOR. At the same time, we discovered a new branch of the Nutrient pathway that appears to drive growth through dMyc but indipendently from TOR. We believe our work shed light on the mechanisms cells use to grow or restrain growth in presence/absence of growth promoting cues and for this reason it contributes to understand the physiology of growth control.
Resumo:
Organic electronics has grown enormously during the last decades driven by the encouraging results and the potentiality of these materials for allowing innovative applications, such as flexible-large-area displays, low-cost printable circuits, plastic solar cells and lab-on-a-chip devices. Moreover, their possible field of applications reaches from medicine, biotechnology, process control and environmental monitoring to defense and security requirements. However, a large number of questions regarding the mechanism of device operation remain unanswered. Along the most significant is the charge carrier transport in organic semiconductors, which is not yet well understood. Other example is the correlation between the morphology and the electrical response. Even if it is recognized that growth mode plays a crucial role into the performance of devices, it has not been exhaustively investigated. The main goal of this thesis was the finding of a correlation between growth modes, electrical properties and morphology in organic thin-film transistors (OTFTs). In order to study the thickness dependence of electrical performance in organic ultra-thin-film transistors, we have designed and developed a home-built experimental setup for performing real-time electrical monitoring and post-growth in situ electrical characterization techniques. We have grown pentacene TFTs under high vacuum conditions, varying systematically the deposition rate at a fixed room temperature. The drain source current IDS and the gate source current IGS were monitored in real-time; while a complete post-growth in situ electrical characterization was carried out. At the end, an ex situ morphological investigation was performed by using the atomic force microscope (AFM). In this work, we present the correlation for pentacene TFTs between growth conditions, Debye length and morphology (through the correlation length parameter). We have demonstrated that there is a layered charge carriers distribution, which is strongly dependent of the growth mode (i.e. rate deposition for a fixed temperature), leading to a variation of the conduction channel from 2 to 7 monolayers (MLs). We conciliate earlier reported results that were apparently contradictory. Our results made evident the necessity of reconsidering the concept of Debye length in a layered low-dimensional device. Additionally, we introduce by the first time a breakthrough technique. This technique makes evident the percolation of the first MLs on pentacene TFTs by monitoring the IGS in real-time, correlating morphological phenomena with the device electrical response. The present thesis is organized in the following five chapters. Chapter 1 makes an introduction to the organic electronics, illustrating the operation principle of TFTs. Chapter 2 presents the organic growth from theoretical and experimental points of view. The second part of this chapter presents the electrical characterization of OTFTs and the typical performance of pentacene devices is shown. In addition, we introduce a correcting technique for the reconstruction of measurements hampered by leakage current. In chapter 3, we describe in details the design and operation of our innovative home-built experimental setup for performing real-time and in situ electrical measurements. Some preliminary results and the breakthrough technique for correlating morphological and electrical changes are presented. Chapter 4 meets the most important results obtained in real-time and in situ conditions, which correlate growth conditions, electrical properties and morphology of pentacene TFTs. In chapter 5 we describe applicative experiments where the electrical performance of pentacene TFTs has been investigated in ambient conditions, in contact to water or aqueous solutions and, finally, in the detection of DNA concentration as label-free sensor, within the biosensing framework.
Resumo:
Aim: To evaluate the early response to treatment to an antiangiogenetic drug (sorafenib) in a heterotopic murine model of hepatocellular carcinoma (HCC) using ultrasonographic molecular imaging. Material and Methods: the xenographt model was established injecting a suspension of HuH7 cells subcutaneously in 19 nude mice. When tumors reached a mean diameter of 5-10 mm, they were divided in two groups (treatment and vehicle). The treatment group received sorafenib (62 mg/kg) by daily oral gavage for 14 days. Molecular imaging was performed using contrast enhanced ultrasound (CEUS), by injecting into the mouse venous circulation a suspension of VEGFR-2 targeted microbubbles (BR55, kind gift of Bracco Swiss, Geneve, Switzerland). Video clips were acquired for 6 minutes, then microbubbles (MBs) were destroyed by a high mechanical index (MI) impulse, and another minute was recorded to evaluate residual circulating MBs. The US protocol was repeated at day 0,+2,+4,+7, and +14 from the beginning of treatment administration. Video clips were analyzed using a dedicated software (Sonotumor, Bracco Swiss) to quantify the signal of the contrast agent. Time/intensity curves were obtained and the difference of the mean MBs signal before and after high MI impulse (Differential Targeted Enhancement-dTE) was calculated. dTE represents a numeric value in arbitrary units proportional to the amount of bound MBs. At day +14 mice were euthanized and the tumors analyzed for VEGFR-2, pERK, and CD31 tissue levels using western blot analysis. Results: dTE values decreased from day 0 to day +14 both in treatment and vehicle groups, and they were statistically higher in vehicle group than in treatment group at day +2, at day +7, and at day +14. With respect to the degree of tumor volume increase, measured as growth percentage delta (GPD), treatment group was divided in two sub-groups, non-responders (GPD>350%), and responders (GPD<200%). In the same way vehicle group was divided in slow growth group (GPD<400%), and fast growth group (GPD>900%). dTE values at day 0 (immediately before treatment start) were higher in non-responders than in responders group, with statistical difference at day 2. While dTE values were higher in the fast growth group than in the slow growth group only at day 0. A significant positive correlation was found between VEGFR-2 tissue levels and dTE values, confirming that level of BR55 tissue enhancement reflects the amount of tissue VEGF receptor. Conclusions: the present findings show that, at least in murine experimental models, CEUS with BR55 is feasable and appears to be a useful tool in the prediction of tumor growth and response to sorafenib treatment in xenograft HCC.
Resumo:
In the last years, sustainable horticulture has been increasing; however, to be successful this practice needs an efficient soil fertility management to maintain a high productivity and fruit quality standards. For this purpose composted organic materials from agri-food industry and municipal solid waste has been used as a source to replace chemical fertilizers and increase soil organic matter. To better understand the influence of compost application on soil fertility and plant growth, we carried out a study comparing organic and mineral nitrogen (N) fertilization in micro propagated plants, potted trees and commercial peach orchard with these aims: 1. evaluation of tree development, CO2 fixation and carbon partition to the different organs of two-years-old potted peach trees. 2. Determination of soil N concentration and nitrate-N effect on plant growth and root oxidative stress of micro propagated plant after increasing rates of N applications. 3. Assessment of soil chemical and biological fertility, tree growth and yield and fruit quality in a commercial orchard. The addition of compost at high rate was effective in increasing CO2 fixation, promoting root growth, shoot and fruit biomass. Furthermore, organic fertilizers influenced C partitioning, favoring C accumulation in roots, wood and fruits. The higher CO2 fixation was the result of a larger tree leaf area, rather than an increase in leaf photosynthetic efficiency, showing a stimulation of plant growth by application of compost. High concentrations of compost increased total soil N concentration, but were not effective in increasing nitrate-N soil concentration; in contrast mineral-N applications increased linearly soil nitrate-N, even at the lowest rate tested. Soil nitrate-N concentration influenced positively plant growth at low rate (60- 80 mg kg-1), whereas at high concentrations showed negative effects. In this trial, the decrease of root growth, as a response to excessive nitrate-N soil concentration, was not anticipated by root oxidative stress. Continuous annual applications of compost for 10 years enhanced soil organic matter content and total soil N concentration. Additionally, high rate of compost application (10 t ha-1 year-1) enhanced microbial biomass. On the other hand, different fertilizers management did not modify tree yield, but influenced fruit size and precocity index. The present data support the idea that organic fertilizers can be used successfully as a substitute of mineral fertilizers in fruit tree nutrient management, since they promote an increase of soil chemical and biological fertility, prevent excessive nitrate-N soil concentration, promote plant growth and potentially C sequestration into the soil.
Resumo:
Jasmonates (JAs) and spermidine (Sd) influence fruit (and seed) development and ripening. In order to unravel their effects in peach fruit, at molecular level, field applications of methyl jasmonate (MJ) and propyl dihydrojasmonate (PDJ), and Sd were performed at an early developmental stage (late S1). At commercial harvest, JA-treated fruit were less ripe than controls. Realtime RT-PCR analyses confirmed a down-regulation of ethylene biosynthetic, perception and signaling genes, and flesh softening-related genes. The expression of cell wall-related genes, of a sugar-transporter and hormone-related transcript levels was also affected by JAs. Seeds from JA-treated fruit showed a shift in the expression of developmental marker genes suggesting that the developmental program was probably slowed down, in agreement with the contention that JAs divert resources from growth to defense. JAs also affected phenolic content and biosynthetic gene expression in the mesocarp. Levels of hydroxycinnamic acids, as well as those of flavan-3-ols, were enhanced, mainly by MJ, in S2. Transcript levels of phenylpropanoid pathway genes were up-regulated by MJ, in agreement with phenolic content. Sd-treated fruits at harvest showed reduced ethylene production and flesh softening. Sd induced a short-term and long-term response patterns in endogenous polyamines. At ripening the up-regulation of the ethylene biosynthetic genes was dramatically counteracted by Sd, leading to a down-regulation of softening-related genes. Hormone-related gene expression was also altered both in the short- and long-term. Gene expression analyses suggest that Sd interfered with fruit development/ripening by interacting with multiple hormonal pathways and that fruit developmental marker gene expression was shifted ahead in accord with a developmental slowing down. 24-Epibrassinolide was applied to Flaminia peaches under field conditions early (S1) or later (S3) during development. Preliminary results showed that, at harvest, treated fruit tended to be larger and less mature though quality parameters did not change relative to controls.
Resumo:
Herbicides are becoming emergent contaminants in Italian surface, coastal and ground waters, due to their intensive use in agriculture. In marine environments herbicides have adverse effects on non-target organisms, as primary producers, resulting in oxygen depletion and decreased primary productivity. Alterations of species composition in algal communities can also occur due to the different sensitivity among the species. In the present thesis the effects of herbicides, widely used in the Northern Adriatic Sea, on different algal species were studied. The main goal of this work was to study the influence of temperature on algal growth in the presence of the triazinic herbicide terbuthylazine (TBA), and the cellular responses adopted to counteract the toxic effects of the pollutant (Chapter 1 and 2). The development of simulation models to be applied in environmental management are needed to organize and track information in a way that would not be possible otherwise and simulate an ecological prospective. The data collected from laboratory experiments were used to simulate algal responses to the TBA exposure at increasing temperature conditions (Chapter 3). Part of the thesis was conducted in foreign countries. The work presented in Chapter 4 was focused on the effect of high light on growth, toxicity and mixotrophy of the ichtyotoxic species Prymnesium parvum. In addition, a mesocosm experiment was conducted in order to study the synergic effect of the pollutant emamectin benzoate with other anthropogenic stressors, such as oil pollution and induced phytoplankton blooms (Chapter 5).
Resumo:
Among abiotic stresses, high salinity stress is the most severe environmental stress. High salinity exerts its negative impact mainly by disrupting the ionic and osmotic equilibrium of the cell. In saline soils, high levels of sodium ions lead to plant growth inhibition and even death. Salt tolerance in plants is a multifarious phenomenon involving a variety of changes at molecular, organelle, cellular, tissue as well as whole plant level. In addition, salt tolerant plants show a range of adaptations not only in morphological or structural features but also in metabolic and physiological processes that enable them to survive under extreme saline environments. The main objectives of my dissertation were understanding the main physiological and biomolecular features of plant responses to salinity in different genotypes of horticultural crops that are belonging to different families Solanaceae (tomato) and Cucurbitaceae (melon) and Brassicaceae (cabbage and radish). Several aspects of crop responses to salinity have been addressed with the final aim of combining elements of functional stress response in plants by using several ways for the assessment of plant stress perception that ranging from destructive measurements (eg. leaf area, relative growth rate, leaf area index, and total plant fresh and dry weight), to physiological determinations (eg. stomatal conductance, leaf gas exchanges, water use efficiency, and leaf water relation), to the determination of metabolite accumulation in plant tissue (eg. Proline and protein) as well as evaluation the role of enzymatic antioxidant capacity assay in scavenging reactive oxygen species that have been generated under salinized condition, and finally assessing the gene induction and up-down regulation upon salinization (eg. SOS pathway).
Resumo:
Durum wheat is the second most important wheat species worldwide and the most important crop in several Mediterranean countries including Italy. Durum wheat is primarily grown under rainfed conditions where episodes of drought and heat stress are major factors limiting grain yield. The research presented in this thesis aimed at the identification of traits and genes that underlie root system architecture (RSA) and tolerance to heat stress in durum wheat, in order to eventually contribute to the genetic improvement of this species. In the first two experiments we aimed at the identification of QTLs for root trait architecture at the seedling level by studying a bi-parental population of 176 recombinant inbred lines (from the cross Meridiano x Claudio) and a collection of 183 durum elite accessions. Forty-eight novel QTLs for RSA traits were identified in each of the two experiments, by means of linkage- and association mapping-based QTL analysis, respectively. Important QTLs controlling the angle of root growth in the seedling were identified. In a third experiment, we investigated the phenotypic variation of root anatomical traits by means of microscope-based analysis of root cross sections in 10 elite durum cultivars. The results showed the presence of sizeable genetic variation in aerenchyma-related traits, prompting for additional studies aimed at mapping the QTLs governing such variation and to test the role of aerenchyma in the adaptive response to abiotic stresses. In the fourth experiment, an association mapping experiment for cell membrane stability at the seedling stage (as a proxy trait for heat tolerance) was carried out by means of association mapping. A total of 34 QTLs (including five major ones), were detected. Our study provides information on QTLs for root architecture and heat tolerance which could potentially be considered in durum wheat breeding programs.