3 resultados para genetic heterogeneity of environmental variation
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
Durum wheat is the second most important wheat species worldwide and the most important crop in several Mediterranean countries including Italy. Durum wheat is primarily grown under rainfed conditions where episodes of drought and heat stress are major factors limiting grain yield. The research presented in this thesis aimed at the identification of traits and genes that underlie root system architecture (RSA) and tolerance to heat stress in durum wheat, in order to eventually contribute to the genetic improvement of this species. In the first two experiments we aimed at the identification of QTLs for root trait architecture at the seedling level by studying a bi-parental population of 176 recombinant inbred lines (from the cross Meridiano x Claudio) and a collection of 183 durum elite accessions. Forty-eight novel QTLs for RSA traits were identified in each of the two experiments, by means of linkage- and association mapping-based QTL analysis, respectively. Important QTLs controlling the angle of root growth in the seedling were identified. In a third experiment, we investigated the phenotypic variation of root anatomical traits by means of microscope-based analysis of root cross sections in 10 elite durum cultivars. The results showed the presence of sizeable genetic variation in aerenchyma-related traits, prompting for additional studies aimed at mapping the QTLs governing such variation and to test the role of aerenchyma in the adaptive response to abiotic stresses. In the fourth experiment, an association mapping experiment for cell membrane stability at the seedling stage (as a proxy trait for heat tolerance) was carried out by means of association mapping. A total of 34 QTLs (including five major ones), were detected. Our study provides information on QTLs for root architecture and heat tolerance which could potentially be considered in durum wheat breeding programs.
Resumo:
Genetic differences among human groups can be ascribed both to the broad-scale extents of pre-historical and historical migrations and to the fine-scale impacts of socio-cultural and geographic heterogeneity. In this thesis, the genetic information provided by uniparental markers were exploited to address different aspects of the Italian population history, by combining macro- and micro-geographic investigations at different spatial and temporal scales. To firstly assess the overall Italian variability, Y-chromosome and mtDNA markers were deeply typed in ~900 individuals from continental Italy, Sicily and Sardinia. Sex-biased patterns and contrasting demographic histories were observed for males and females. Differential European and Mediterranean contributions were invoked to explain the paternal genetic sub-structure observed in peninsular Italy, compared to the homogeneous maternal genetic landscape. If Neolithic showed to be one principal determinant of the detected paternal structure, local insights into specific Italian regional contexts highlighted the importance of Post-Neolithic contributions. Among them, migrations from the Balkans (particularly Greece) during late Metal Ages, played a relevant role in the cultural and genetic transitions occurred in Sicily and Southern Italy. On a finer geographic and temporal perspective, the more recent layers of Italian genetic history and some aspects of the gene-culture interaction were assessed by exploring the genetic variability within two “marginal populations”: Arbereshe of Southern Italy and Partecipanza in Northern Italy. The Arbereshe are Albanian-speaking communities settled in Sicily and Calabria since the end of Middle Ages. Despite sharing common genetic and cultural backgrounds, these groups revealed diverging micro-evolutionary histories, implying different founding events and different patterns of cultural isolation and local admixture. Partecipanza is an idiosyncratic institution of Medieval origin aimed at sharing and devolving collective lands. This case-study exemplified that socio-economic stratification within the same population may induce sex-biased genetic structuring and the maintenance of otherwise hidden historical genetic traces.
Resumo:
As a large and long-lived species with high economic value, restricted spawning areas and short spawning periods, the Atlantic bluefin tuna (BFT; Thunnus thynnus) is particularly susceptible to over-exploitation. Although BFT have been targeted by fisheries in the Mediterranean Sea for thousands of years, it has only been in these last decades that the exploitation rate has reached far beyond sustainable levels. An understanding of the population structure, spatial dynamics, exploitation rates and the environmental variables that affect BFT is crucial for the conservation of the species. The aims of this PhD project were 1) to assess the accuracy of larval identification methods, 2) determine the genetic structure of modern BFT populations, 3) assess the self-recruitment rate in the Gulf of Mexico and Mediterranean spawning areas, 4) estimate the immigration rate of BFT to feeding aggregations from the various spawning areas, and 5) develop tools capable of investigating the temporal stability of population structuring in the Mediterranean Sea. Several weaknesses in modern morphology-based taxonomy including demographic decline of expert taxonomists, flawed identification keys, reluctance of the taxonomic community to embrace advances in digital communications and a general scarcity of modern user-friendly materials are reviewed. Barcoding of scombrid larvae revealed important differences in the accuracy of the taxonomic identifications carried out by different ichthyoplanktologists following morphology-based methods. Using a Genotyping-by-Sequencing a panel of 95 SNPs was developed and used to characterize the population structuring of BFT and composition of adult feeding aggregations. Using novel molecular techniques, DNA was extracted from bluefin tuna vertebrae excavated from late iron age, ancient roman settlements Byzantine-era Constantinople and a 20th century collection. A second panel of 96 SNPs was developed to genotype historical and modern samples in order to elucidate changes in population structuring and allele frequencies of loci associated with selective traits.