3 resultados para general rotational surfaces

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis focuses on studying molecular structure and internal dynamics by using pulsed jet Fourier transform microwave (PJ-FTMW) spectroscopy combined with theoretical calculations. Several kinds of interesting chemical problems are investigated by analyzing the MW spectra of the corresponding molecular systems. First, the general aspects of rotational spectroscopy are summarized, and then the basic theory on molecular rotation and experimental method are described briefly. ab initio and density function theory (DFT) calculations that used in this thesis to assist the assignment of rotational spectrum are also included. From chapter 3 to chapter 8, several molecular systems concerning different kind of general chemical problems are presented. In chapter 3, the conformation and internal motions of dimethyl sulfate are reported. The internal rotations of the two methyl groups split each rotational transition into several components line, allowing for the determination of accurate values of the V3 barrier height to internal rotation and of the orientation of the methyl groups with respect to the principal axis system. In chapter 4 and 5, the results concerning two kinds of carboxylic acid bi-molecules, formed via two strong hydrogen bonds, are presented. This kind of adduct is interesting also because a double proton transfer can easily take place, connecting either two equivalent or two non-equivalent molecular conformations. Chapter 6 concerns a medium strong hydrogen bonded molecular complex of alcohol with ether. The dimer of ethanol-dimethylether was chosen as the model system for this purpose. Chapter 7 focuses on weak halogen…H hydrogen bond interaction. The nature of O-H…F and C-H…Cl interaction has been discussed through analyzing the rotational spectra of CH3CHClF/H2O. In chapter 8, two molecular complexes concerning the halogen bond interaction are presented.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The pulsed jet Fourier transform microwave spectroscopy have been applied to several molecular complexes involving H2O, freons, methane, carboxylic acids, and rare gas. The obtained results showcase the suitability of this technique for studying the intermolecular interactions. The rotational spectra of three water adducts of halogenated organic molecules, i.e. chlorotrifluoroethylene, isoflurane and alfa,alfa,alfa,-trifluoroanisole, have been investigated. It has been found that, the halogenation of the partner molecules definitely changes the way in which water will link to the partner molecule. Quadrupole hyperfine structures and/or the tunneling splittings have been observed in the rotational spectra of difluoromethane-dichloromethane, chlorotrifluorometane-fluoromethane, difluoromethane-formaldehyde and trifluoromethane-benzene. These features have been useful to describe their intermolecular interactions (weak hydrogen bonds or halogen bonds), and to size the potential energy surfaces of their internal motions. The rotational spectrum of pyridine-methane pointed out that methane prefers to locate above the ring and link to pyridine through a C-H•••π weak hydrogen bond, rather than the C-H•••n interaction. This behavior, typical of complexes of pyridine with rare gases, suggests classifying CH4, in relation to its ability to form molecular complexes with aromatic molecules, as a pseudo rare gas. The conformational equilibria of three bi-molecules of carboxylic acids, acrylic acid-trifluoroacetic acid, difluoroacetic acid-formic acid and acrylic acid-fluoroacetic acid have been studied. The increase of the hydrogen bond length upon H→D isotopic substitution (Ubbelohde effect) has been deduced from the elongation of the carboxylic carbons C•••C distance. The van der Waals complex tetrahydrofuran-krypton shows that the systematic doubling of the rotational lines has been attributed to the residual pseudo-rotation of tetrahydrofuran in the complex, based on the values of the Coriolis coupling constants, and on the type (mu_b) of the interstate transitions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis concerns the study of complex conformational surfaces and tautomeric equilibria of molecules and molecular complexes by quantum chemical methods and rotational spectroscopy techniques. In particular, the focus of this research is on the effects of substitution and noncovalent interactions in determining the energies and geometries of different conformers, tautomers or molecular complexes. The Free-Jet Absorption Millimeter Wave spectroscopy and the Pulsed-Jet Fourier Transform Microwave spectroscopy have been applied to perform these studies and the obtained results showcase the suitability of these techniques for the study of conformational surfaces and intermolecular interactions. The series of investigations of selected medium-size molecules and complexes have shown how different instrumental setups can be used to obtain a variety of results on molecular properties. The systems studied, include molecules of biological interest such as anethole and molecules of astrophysical interest such as N-methylaminoethanol. Moreover halogenation effects have been investigated on halogen substituted tautomeric systems (5-chlorohydroxypyridine and 6-chlorohydroxypyridine), where it has shown that the position of the inserted halogen atom affects the prototropic equilibrium. As for fluorination effects, interesting results have been achieved investigating some small complexes where a molecule of water is used as a probe to reveal the changes on the electrostatic potential of different fluorinated compounds: 2-fluoropyridine, 3-fluoropyridine and penta-fluoropyridine. While in the case of the molecular complex between water and 2-fluoropyridine and 3-fluoropyridine the geometry of the complex with one water molecule is analogous to that of pyridine with the water molecule linked to the pyridine nitrogen, the case of pentafluoropyridine reveals the effect of perfluorination and the water oxygen points towards the positive center of the pyridine ring. Additional molecular adducts with a molecule of water have been analyzed (benzylamine-water and acrylic acid-water) in order to reveal the stabilizing driving forces that characterize these complexes.