4 resultados para fuzzy Analysis
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
Analysts, politicians and international players from all over the world look at China as one of the most powerful countries on the international scenario, and as a country whose economic development can significantly impact on the economies of the rest of the world. However many aspects of this country have still to be investigated. First the still fundamental role played by Chinese rural areas for the general development of the country from a political, economic and social point of view. In particular, the way in which the rural areas have influenced the social stability of the whole country has been widely discussed due to their strict relationship with the urban areas where most people from the countryside emigrate searching for a job and a better life. In recent years many studies have mostly focused on the urbanization phenomenon with little interest in the living conditions in rural areas and in the deep changes which have occurred in some, mainly agricultural provinces. An analysis of the level of infrastructure is one of the main aspects which highlights the principal differences in terms of living conditions between rural and urban areas. In this thesis, I first carried out the analysis through the multivariate statistics approach (Principal Component Analysis and Cluster Analysis) in order to define the new map of rural areas based on the analysis of living conditions. In the second part I elaborated an index (Living Conditions Index) through the Fuzzy Expert/Inference System. Finally I compared this index (LCI) to the results obtained from the cluster analysis drawing geographic maps. The data source is the second national agricultural census of China carried out in 2006. In particular, I analysed the data refer to villages but aggregated at province level.
Resumo:
Nell’attuale contesto di aumento degli impatti antropici e di “Global Climate Change” emerge la necessità di comprenderne i possibili effetti di questi sugli ecosistemi inquadrati come fruitori di servizi e funzioni imprescindibili sui quali si basano intere tessiture economiche e sociali. Lo studio previsionale degli ecosistemi si scontra con l’elevata complessità di questi ultimi in luogo di una altrettanto elevata scarsità di osservazioni integrate. L’approccio modellistico appare il più adatto all’analisi delle dinamiche complesse degli ecosistemi ed alla contestualizzazione complessa di risultati sperimentali ed osservazioni empiriche. L’approccio riduzionista-deterministico solitamente utilizzato nell’implementazione di modelli non si è però sin qui dimostrato in grado di raggiungere i livelli di complessità più elevati all’interno della struttura eco sistemica. La componente che meglio descrive la complessità ecosistemica è quella biotica in virtù dell’elevata dipendenza dalle altre componenti e dalle loro interazioni. In questo lavoro di tesi viene proposto un approccio modellistico stocastico basato sull’utilizzo di un compilatore naive Bayes operante in ambiente fuzzy. L’utilizzo congiunto di logica fuzzy e approccio naive Bayes è utile al processa mento del livello di complessità e conseguentemente incertezza insito negli ecosistemi. I modelli generativi ottenuti, chiamati Fuzzy Bayesian Ecological Model(FBEM) appaiono in grado di modellizare gli stati eco sistemici in funzione dell’ elevato numero di interazioni che entrano in gioco nella determinazione degli stati degli ecosistemi. Modelli FBEM sono stati utilizzati per comprendere il rischio ambientale per habitat intertidale di spiagge sabbiose in caso di eventi di flooding costiero previsti nell’arco di tempo 2010-2100. L’applicazione è stata effettuata all’interno del progetto EU “Theseus” per il quale i modelli FBEM sono stati utilizzati anche per una simulazione a lungo termine e per il calcolo dei tipping point specifici dell’habitat secondo eventi di flooding di diversa intensità.
Resumo:
La tesi affronta il concetto di esposizione al rischio occupazionale e il suo scopo è quello di indagare l’ambiente di lavoro e il comportamento dei lavoratori, con l'obiettivo di ridurre il tasso di incidenza degli infortuni sul lavoro ed eseguire la riduzione dei rischi. In primo luogo, è proposta una nuova metodologia denominata MIMOSA (Methodology for the Implementation and Monitoring of Occupational SAfety), che quantifica il livello di "salute e sicurezza" di una qualsiasi impresa. Al fine di raggiungere l’obiettivo si è reso necessario un approccio multidisciplinare in cui concetti d’ingegneria e di psicologia sono stati combinati per sviluppare una metodologia di previsione degli incidenti e di miglioramento della sicurezza sul lavoro. I risultati della sperimentazione di MIMOSA hanno spinto all'uso della Logica Fuzzy nel settore della sicurezza occupazionale per migliorare la metodologia stessa e per superare i problemi riscontrati nell’incertezza della raccolta dei dati. La letteratura mostra che i fattori umani, la percezione del rischio e il comportamento dei lavoratori in relazione al rischio percepito, hanno un ruolo molto importante nella comparsa degli incidenti. Questa considerazione ha portato ad un nuovo approccio e ad una seconda metodologia che consiste nella prevenzione di incidenti, non solo sulla base dell'analisi delle loro dinamiche passate. Infatti la metodologia considera la valutazione di un indice basato sui comportamenti proattivi dei lavoratori e sui danni potenziali degli eventi incidentali evitati. L'innovazione consiste nell'applicazione della Logica Fuzzy per tener conto dell’"indeterminatezza" del comportamento umano e del suo linguaggio naturale. In particolare l’applicazione è incentrata sulla proattività dei lavoratori e si prefigge di impedire l'evento "infortunio", grazie alla generazione di una sorta d’indicatore di anticipo. Questa procedura è stata testata su un’azienda petrolchimica italiana.
Resumo:
Intelligent systems are currently inherent to the society, supporting a synergistic human-machine collaboration. Beyond economical and climate factors, energy consumption is strongly affected by the performance of computing systems. The quality of software functioning may invalidate any improvement attempt. In addition, data-driven machine learning algorithms are the basis for human-centered applications, being their interpretability one of the most important features of computational systems. Software maintenance is a critical discipline to support automatic and life-long system operation. As most software registers its inner events by means of logs, log analysis is an approach to keep system operation. Logs are characterized as Big data assembled in large-flow streams, being unstructured, heterogeneous, imprecise, and uncertain. This thesis addresses fuzzy and neuro-granular methods to provide maintenance solutions applied to anomaly detection (AD) and log parsing (LP), dealing with data uncertainty, identifying ideal time periods for detailed software analyses. LP provides deeper semantics interpretation of the anomalous occurrences. The solutions evolve over time and are general-purpose, being highly applicable, scalable, and maintainable. Granular classification models, namely, Fuzzy set-Based evolving Model (FBeM), evolving Granular Neural Network (eGNN), and evolving Gaussian Fuzzy Classifier (eGFC), are compared considering the AD problem. The evolving Log Parsing (eLP) method is proposed to approach the automatic parsing applied to system logs. All the methods perform recursive mechanisms to create, update, merge, and delete information granules according with the data behavior. For the first time in the evolving intelligent systems literature, the proposed method, eLP, is able to process streams of words and sentences. Essentially, regarding to AD accuracy, FBeM achieved (85.64+-3.69)%; eGNN reached (96.17+-0.78)%; eGFC obtained (92.48+-1.21)%; and eLP reached (96.05+-1.04)%. Besides being competitive, eLP particularly generates a log grammar, and presents a higher level of model interpretability.