3 resultados para fungal disease

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Several diseases challenge bread and durum wheat productions worldwide. The importance of these cereals requires adequate protection to pathogens that can cause strong yield and grain quality losses. The main work of this thesis was related to phenotype GDP (Global Durum Panel) in the Mediterranean region (Italy, Egypt, Lebanon, Morocco and Turkey) and Argentina across three years (2019-2021) for yellow rust resistance (infection type and severity). GWAS shows in particular, loci in chromosome 1B, 2B, 4B, 5A, 6A, 7B showed high significance across nurseries/years, with various patterns of GxE. The second chapter is about Zymoseptoria tritici, agent of STB (Septoria Tritici Blotch), a foliar pathogen that yearly causes high damages if not controlled. In recent years research in durum wheat breeding is focused on the identification of novel, underexploited resistance genes to be subsequently and conveniently moved into the pre-breeding and breeding stream. The plants were phenotyped for disease height characters, infection type at the flag leaf and infection type at the level of the canopy below the flag leaf. This experiment opens up a rich scenario of analysis and opportunities to investigate and discover new loci of resistance to STB. Third chapter is about Fusarium head blight (FHB) is a fungal disease caused by pathogens belonging to the genus Fusarium. In particular, Fusarium culmorum and Fusarium graminearum species cause severe grain yield losses and accumulation of mycotoxins in wheat that compromise food safety. Over 250 QTL/genes for FHB resistance have been identified in bread wheat, such as Fhb 1 and Fhb 5 but only a small number of FHB resistance loci have been mapped in durum wheat. The aim of this work is to find loci of partial resistance to FHB already present in durum and bread wheat germplasm and therefore easily cumulative.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Apple latent infection caused by Neofabraea alba: host-pathogen interaction and disease management Bull’s eye rot (BER) caused by Neofabraea alba is one of the most frequent and damaging latent infection occurring in stored pome fruits worldwide. Fruit infection occurs in the orchard, but disease symptoms appear only 3 months after harvest, during refrigerated storage. In Italy BER is particularly serious for late harvest apple cultivar as ‘Pink Lady™’. The purposes of this thesis were: i) Evaluate the influence of ‘Pink Lady™’ apple primary metabolites in N. alba quiescence ii) Evaluate the influence of pH in five different apple cultivars on BER susceptibility iii) To find out not chemical method to control N. alba infection iv) Identify some fungal volatile compounds in order to use them as N. alba infections markers. Results regarding the role of primary metabolites showed that chlorogenic, quinic and malic acid inhibit N. alba development. The study based on the evaluation of cultivar susceptibility, showed that Granny Smith was the most resistant apple cultivar among the varieties analyzed. Moreover, Granny Smith showed the lowest pH value from harvest until the end of storage, supporting the thesis that ambient pH could be involved in the interaction between N. alba and apple. In order to find out new technologies able to improve lenticel rot management, the application of a non-destructive device for the determination of chlorophyll content was applied. Results showed that fruit with higher chlorophyll content are less susceptible to BER, and molecular analyses comforted this result. Fruits with higher chlorophyll content showed up-regulation of PGIP and HCT, genes involved in plant defence. Through the application of PTR-MS and SPME GC-MS, 25 volatile organic compounds emitted by N. alba were identified. Among them, 16 molecules were identified as potential biomarkers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Strawberry (Fragaria × ananassa) is an important soft fruit but easily to be infected by pathogens. Anthracnose and gray mold are two of the most destructive diseases of strawberry which lead to serious fruit rot. The first chapter introduced strawberry anthracnose caused by Colletotrichum acutatum. The infection strategy, disease cycle and management of C. acutatum on strawberry were reported. Likewise, the second chapter summarized the infection strategy of Botrytis cinerea and the defense responses of strawberry. As we already know white unripe strawberry fruits are more resistant to C. acutatum than red ripe fruits. During the interaction between strawberry white/red fruit and C. acutaum, a mannose binding lectin gene, FaMBL1, was found to be the most up-regulated gene and induced exclusively in white fruit. FaMBL1 belongs to the G-type lectin family which has important roles in plant development and defense process. To get insight into the role of FaMBL1, genome-wide identification was carried out on G-type lectin gene family in Fragaria vesca and the results were showed in chapter 3. G-type lectin genes make up a large family in F. vesca. Active expression upon biotic/abiotic stresses suggested a potential role of G-lectin genes in strawberry defenses. Hence, stable transgenic strawberry plants with FaMBL1 gene overexpressed were generated. Transformed strawberry plants were screened and identified. The results were showed in chapter 4, content of disease-related phytohormone, jasmonic acid, was found decreased in overexpressing lines compared with wild type (WT). Petioles inoculated by C. fioriniae of overexpressing lines had lower disease incidence than WT. Leaves of overexpressing lines challenged by B. cinerea showed remarkably smaller lesion diameters compared with WT. The chitinase 2-1 (FaChi2-1) showed higher expression in overexpressing lines than in WT during the interaction with B. cinerea, which could be related with the lower susceptibility of overexpressing lines.