2 resultados para fractional urea clearance
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
This work concerns the study of bounded solutions to elliptic nonlinear equations with fractional diffusion. More precisely, the aim of this thesis is to investigate some open questions related to a conjecture of De Giorgi about the one-dimensional symmetry of bounded monotone solutions in all space, at least up to dimension 8. This property on 1-D symmetry of monotone solutions for fractional equations was known in dimension n=2. The question remained open for n>2. In this work we establish new sharp energy estimates and one-dimensional symmetry property in dimension 3 for certain solutions of fractional equations. Moreover we study a particular type of solutions, called saddle-shaped solutions, which are the candidates to be global minimizers not one-dimensional in dimensions bigger or equal than 8. This is an open problem and it is expected to be true from the classical theory of minimal surfaces.
Resumo:
This doctoral dissertation presents a new method to asses the influence of clearancein the kinematic pairs on the configuration of planar and spatial mechanisms. The subject has been widely investigated in both past and present scientific literature, and is approached in different ways: a static/kinetostatic way, which looks for the clearance take-up due to the external loads on the mechanism; a probabilistic way, which expresses clearance-due displacements using probability density functions; a dynamic way, which evaluates dynamic effects like the actual forces in the pairs caused by impacts, or the consequent vibrations. This dissertation presents a new method to approach the problem of clearance. The problem is studied from a purely kinematic perspective. With reference to a given mechanism configuration, the pose (position and orientation) error of the mechanism link of interest is expressed as a vector function of the degrees of freedom introduced in each pair by clearance: the presence of clearance in a kinematic pair, in facts, causes the actual pair to have more degrees of freedom than the theoretical clearance-free one. The clearance-due degrees of freedom are bounded by the pair geometry. A proper modelling of clearance-affected pairs allows expressing such bounding through analytical functions. It is then possible to study the problem as a maximization problem, where a continuous function (the pose error of the link of interest) subject to some constraints (the analytical functions bounding clearance- due degrees of freedom) has to be maximize. Revolute, prismatic, cylindrical, and spherical clearance-affected pairs have been analytically modelled; with reference to mechanisms involving such pairs, the solution to the maximization problem has been obtained in a closed form.