2 resultados para formulation development

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The industrial PhD project presented here is part of the R&D strategies of the Lipinutragen company. The innovation brought by the company concerns nutrilipidomics, i.e. the correlation between the lipid composition (in fatty acids) of the cell membrane and lipid-based nutraceuticals, especially starting from the well-known dependence of the lipid composition on the intake of essential fats, omega- 6 and omega-3 polyunsaturated fatty acids. Among the results obtained from the membrane lipidomic profiles, the case of autistic subjects is here highlighted, showing the significant deficiency of docosahexaenoic acid (DHA). The activity during the PhD was devoted to the nutrilipidomic approach. Part of the activities were devoted to scientific research in lipidomics: a) the study of lipidomic profiles in the frame of two collaboration projects: one with the group of Dr. I. Tueros at AZTI, Bilbao, regading obese population, and the other one regarding seed germination with the changes of the fatty acid profiles with the group of prof. A. Balestrazzi of the University of Parma; b) the liposome preparation for protection and lifetime prolongation of the peptide somatostatin, which was an important premise to the formulation of the DHA-containing microemulsion. The activities was also focused on the development of DHA-containing nutraceutical formulations in the form of emulsion, overcoming the difficulty of the capsule ingestion, to be administered orally. The work pointed to study the combination of active ingredients, based on the previous know-how regarding the bioavailability for the cell membrane incorporation. The ingredients of the formulation were studied and tested in vitro for the bioavailability of DHA to be incorporated in the cell membranes of different types of cultured cells. Part of this study is covered by non-disclosure agreement since it belongs to the know-how of Lipinutragen.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The atmospheric corrosion of modern and historic alloys used in cultural heritage has been investigated by applying specific accelerated ageing methods. Three main research lines were carried out, involving different materials. In the first part, the atmospheric corrosion of a modern Cu-3Si-1Mn bronze was investigated through accelerated ageing tests simulating outdoor runoff conditions. The corrosion processes were evaluated through different analyses, and the results obtained were compared to those of a traditional quaternary bronze. The second line was carried out to characterise historic aluminium alloys used in aeronautics to develop and apply innovative protection strategies for their conservation. Historic wrecks were identified and characterised through micro and macroscale observations. Moreover, accelerated ageing tests were performed on both historic and modern alloys to compare their behaviour and select the best modern substrate to be used for the development of effective coatings. The third research line aimed to develop accelerate sampling and ageing methods to investigate the role of particulate matter (PM) in the atmospheric corrosion of bronzes and metals in general. The first approach consisted in the fine-tuning of an efficient accelerated method for ambient PM sampling on bronze specimens followed by their accelerated ageing, in order to establish a correlation between the PM and the substrate’s corrosion. After the accelerated ageing of the specimens, the corrosion was evaluated by surface characterisation and correlated to the PM features. The second approach consisted in the development of a synthetic PM formulation and of an artificial deposition method, which was performed by spraying mixtures containing the main PM inorganic fractions on a G-85 bronze with an airbrush. The deposition efficiency was assessed, and the effect of synthetic PM on the bronze corrosion was evaluated. The results were compared to those obtained by ambient PM deposition.