2 resultados para flip-flop
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
In this thesis we present some combinatorial optimization problems, suggest models and algorithms for their effective solution. For each problem,we give its description, followed by a short literature review, provide methods to solve it and, finally, present computational results and comparisons with previous works to show the effectiveness of the proposed approaches. The considered problems are: the Generalized Traveling Salesman Problem (GTSP), the Bin Packing Problem with Conflicts(BPPC) and the Fair Layout Problem (FLOP).
Resumo:
This thesis adresses the problem of localization, and analyzes its crucial aspects, within the context of cooperative WSNs. The three main issues discussed in the following are: network synchronization, position estimate and tracking. Time synchronization is a fundamental requirement for every network. In this context, a new approach based on the estimation theory is proposed to evaluate the ultimate performance limit in network time synchronization. In particular the lower bound on the variance of the average synchronization error in a fully connected network is derived by taking into account the statistical characterization of the Message Delivering Time (MDT) . Sensor network localization algorithms estimate the locations of sensors with initially unknown location information by using knowledge of the absolute positions of a few sensors and inter-sensor measurements such as distance and bearing measurements. Concerning this issue, i.e. the position estimate problem, two main contributions are given. The first is a new Semidefinite Programming (SDP) framework to analyze and solve the problem of flip-ambiguity that afflicts range-based network localization algorithms with incomplete ranging information. The occurrence of flip-ambiguous nodes and errors due to flip ambiguity is studied, then with this information a new SDP formulation of the localization problem is built. Finally a flip-ambiguity-robust network localization algorithm is derived and its performance is studied by Monte-Carlo simulations. The second contribution in the field of position estimate is about multihop networks. A multihop network is a network with a low degree of connectivity, in which couples of given any nodes, in order to communicate, they have to rely on one or more intermediate nodes (hops). Two new distance-based source localization algorithms, highly robust to distance overestimates, typically present in multihop networks, are presented and studied. The last point of this thesis discuss a new low-complexity tracking algorithm, inspired by the Fano’s sequential decoding algorithm for the position tracking of a user in a WLAN-based indoor localization system.