8 resultados para feeding and defecation patterns
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
Recently in most of the industrial automation process an ever increasing degree of automation has been observed. This increasing is motivated by the higher requirement of systems with great performance in terms of quality of products/services generated, productivity, efficiency and low costs in the design, realization and maintenance. This trend in the growth of complex automation systems is rapidly spreading over automated manufacturing systems (AMS), where the integration of the mechanical and electronic technology, typical of the Mechatronics, is merging with other technologies such as Informatics and the communication networks. An AMS is a very complex system that can be thought constituted by a set of flexible working stations, one or more transportation systems. To understand how this machine are important in our society let considerate that every day most of us use bottles of water or soda, buy product in box like food or cigarets and so on. Another important consideration from its complexity derive from the fact that the the consortium of machine producers has estimated around 350 types of manufacturing machine. A large number of manufacturing machine industry are presented in Italy and notably packaging machine industry,in particular a great concentration of this kind of industry is located in Bologna area; for this reason the Bologna area is called “packaging valley”. Usually, the various parts of the AMS interact among them in a concurrent and asynchronous way, and coordinate the parts of the machine to obtain a desiderated overall behaviour is an hard task. Often, this is the case in large scale systems, organized in a modular and distributed manner. Even if the success of a modern AMS from a functional and behavioural point of view is still to attribute to the design choices operated in the definition of the mechanical structure and electrical electronic architecture, the system that governs the control of the plant is becoming crucial, because of the large number of duties associated to it. Apart from the activity inherent to the automation of themachine cycles, the supervisory system is called to perform other main functions such as: emulating the behaviour of traditional mechanical members thus allowing a drastic constructive simplification of the machine and a crucial functional flexibility; dynamically adapting the control strategies according to the different productive needs and to the different operational scenarios; obtaining a high quality of the final product through the verification of the correctness of the processing; addressing the operator devoted to themachine to promptly and carefully take the actions devoted to establish or restore the optimal operating conditions; managing in real time information on diagnostics, as a support of the maintenance operations of the machine. The kind of facilities that designers can directly find on themarket, in terms of software component libraries provides in fact an adequate support as regard the implementation of either top-level or bottom-level functionalities, typically pertaining to the domains of user-friendly HMIs, closed-loop regulation and motion control, fieldbus-based interconnection of remote smart devices. What is still lacking is a reference framework comprising a comprehensive set of highly reusable logic control components that, focussing on the cross-cutting functionalities characterizing the automation domain, may help the designers in the process of modelling and structuring their applications according to the specific needs. Historically, the design and verification process for complex automated industrial systems is performed in empirical way, without a clear distinction between functional and technological-implementation concepts and without a systematic method to organically deal with the complete system. Traditionally, in the field of analog and digital control design and verification through formal and simulation tools have been adopted since a long time ago, at least for multivariable and/or nonlinear controllers for complex time-driven dynamics as in the fields of vehicles, aircrafts, robots, electric drives and complex power electronics equipments. Moving to the field of logic control, typical for industrial manufacturing automation, the design and verification process is approached in a completely different way, usually very “unstructured”. No clear distinction between functions and implementations, between functional architectures and technological architectures and platforms is considered. Probably this difference is due to the different “dynamical framework”of logic control with respect to analog/digital control. As a matter of facts, in logic control discrete-events dynamics replace time-driven dynamics; hence most of the formal and mathematical tools of analog/digital control cannot be directly migrated to logic control to enlighten the distinction between functions and implementations. In addition, in the common view of application technicians, logic control design is strictly connected to the adopted implementation technology (relays in the past, software nowadays), leading again to a deep confusion among functional view and technological view. In Industrial automation software engineering, concepts as modularity, encapsulation, composability and reusability are strongly emphasized and profitably realized in the so-calledobject-oriented methodologies. Industrial automation is receiving lately this approach, as testified by some IEC standards IEC 611313, IEC 61499 which have been considered in commercial products only recently. On the other hand, in the scientific and technical literature many contributions have been already proposed to establish a suitable modelling framework for industrial automation. During last years it was possible to note a considerable growth in the exploitation of innovative concepts and technologies from ICT world in industrial automation systems. For what concerns the logic control design, Model Based Design (MBD) is being imported in industrial automation from software engineering field. Another key-point in industrial automated systems is the growth of requirements in terms of availability, reliability and safety for technological systems. In other words, the control system should not only deal with the nominal behaviour, but should also deal with other important duties, such as diagnosis and faults isolations, recovery and safety management. Indeed, together with high performance, in complex systems fault occurrences increase. This is a consequence of the fact that, as it typically occurs in reliable mechatronic systems, in complex systems such as AMS, together with reliable mechanical elements, an increasing number of electronic devices are also present, that are more vulnerable by their own nature. The diagnosis problem and the faults isolation in a generic dynamical system consists in the design of an elaboration unit that, appropriately processing the inputs and outputs of the dynamical system, is also capable of detecting incipient faults on the plant devices, reconfiguring the control system so as to guarantee satisfactory performance. The designer should be able to formally verify the product, certifying that, in its final implementation, it will perform itsrequired function guarantying the desired level of reliability and safety; the next step is that of preventing faults and eventually reconfiguring the control system so that faults are tolerated. On this topic an important improvement to formal verification of logic control, fault diagnosis and fault tolerant control results derive from Discrete Event Systems theory. The aimof this work is to define a design pattern and a control architecture to help the designer of control logic in industrial automated systems. The work starts with a brief discussion on main characteristics and description of industrial automated systems on Chapter 1. In Chapter 2 a survey on the state of the software engineering paradigm applied to industrial automation is discussed. Chapter 3 presentes a architecture for industrial automated systems based on the new concept of Generalized Actuator showing its benefits, while in Chapter 4 this architecture is refined using a novel entity, the Generalized Device in order to have a better reusability and modularity of the control logic. In Chapter 5 a new approach will be present based on Discrete Event Systems for the problemof software formal verification and an active fault tolerant control architecture using online diagnostic. Finally conclusive remarks and some ideas on new directions to explore are given. In Appendix A are briefly reported some concepts and results about Discrete Event Systems which should help the reader in understanding some crucial points in chapter 5; while in Appendix B an overview on the experimental testbed of the Laboratory of Automation of University of Bologna, is reported to validated the approach presented in chapter 3, chapter 4 and chapter 5. In Appendix C some components model used in chapter 5 for formal verification are reported.
Resumo:
The surface electrocardiogram (ECG) is an established diagnostic tool for the detection of abnormalities in the electrical activity of the heart. The interest of the ECG, however, extends beyond the diagnostic purpose. In recent years, studies in cognitive psychophysiology have related heart rate variability (HRV) to memory performance and mental workload. The aim of this thesis was to analyze the variability of surface ECG derived rhythms, at two different time scales: the discrete-event time scale, typical of beat-related features (Objective I), and the “continuous” time scale of separated sources in the ECG (Objective II), in selected scenarios relevant to psychophysiological and clinical research, respectively. Objective I) Joint time-frequency and non-linear analysis of HRV was carried out, with the goal of assessing psychophysiological workload (PPW) in response to working memory engaging tasks. Results from fourteen healthy young subjects suggest the potential use of the proposed indices in discriminating PPW levels in response to varying memory-search task difficulty. Objective II) A novel source-cancellation method based on morphology clustering was proposed for the estimation of the atrial wavefront in atrial fibrillation (AF) from body surface potential maps. Strong direct correlation between spectral concentration (SC) of atrial wavefront and temporal variability of the spectral distribution was shown in persistent AF patients, suggesting that with higher SC, shorter observation time is required to collect spectral distribution, from which the fibrillatory rate is estimated. This could be time and cost effective in clinical decision-making. The results held for reduced leads sets, suggesting that a simplified setup could also be considered, further reducing the costs. In designing the methods of this thesis, an online signal processing approach was kept, with the goal of contributing to real-world applicability. An algorithm for automatic assessment of ambulatory ECG quality, and an automatic ECG delineation algorithm were designed and validated.
Resumo:
The aim of the project is the creation of a new model for the analysis of the political and social structures of the Northern Levant during the Iron Age, through the study of the production and circulation of ceramics in urban and rural centers. The project includes an innovative approach compared to a traditional contextual and analytical study of ceramic material. The geographical area under consideration represents an ideal context for understanding these dynamics, as a place of interaction between culturally different but constantly communicating areas (Eastern Mediterranean, Syria, Upper Mesopotamia). They corresponds to present-day southeastern Turkey and northern Syria, with the Mediterranean coast and the Euphrates River as limits to the west and east, respectively. The chronological interval taken into consideration by the study extends from the twelfth century BC. to the seventh century BC, corresponding to a phase of political fragmentation of the region into small-medium state entities and their subsequent conquest by the Neo-Assyrian empire starting from the end of the ninth century BC.
Resumo:
This Thesis is composed of a collection of works written in the period 2019-2022, whose aim is to find methodologies of Artificial Intelligence (AI) and Machine Learning to detect and classify patterns and rules in argumentative and legal texts. We define our approach “hybrid”, since we aimed at designing hybrid combinations of symbolic and sub-symbolic AI, involving both “top-down” structured knowledge and “bottom-up” data-driven knowledge. A first group of works is dedicated to the classification of argumentative patterns. Following the Waltonian model of argument and the related theory of Argumentation Schemes, these works focused on the detection of argumentative support and opposition, showing that argumentative evidences can be classified at fine-grained levels without resorting to highly engineered features. To show this, our methods involved not only traditional approaches such as TFIDF, but also some novel methods based on Tree Kernel algorithms. After the encouraging results of this first phase, we explored the use of a some emerging methodologies promoted by actors like Google, which have deeply changed NLP since 2018-19 — i.e., Transfer Learning and language models. These new methodologies markedly improved our previous results, providing us with best-performing NLP tools. Using Transfer Learning, we also performed a Sequence Labelling task to recognize the exact span of argumentative components (i.e., claims and premises), thus connecting portions of natural language to portions of arguments (i.e., to the logical-inferential dimension). The last part of our work was finally dedicated to the employment of Transfer Learning methods for the detection of rules and deontic modalities. In this case, we explored a hybrid approach which combines structured knowledge coming from two LegalXML formats (i.e., Akoma Ntoso and LegalRuleML) with sub-symbolic knowledge coming from pre-trained (and then fine-tuned) neural architectures.
Resumo:
This doctoral thesis aims at contributing to the literature on transition economies focusing on the Russian Federations and in particular on regional income convergence and fertility patterns. The first two chapter deal with the issue of income convergence across regions. Chapter 1 provides an historical-institutional analysis of the period between the late years of the Soviet Union and the last decade of economic growth and a presentation of the sample with a description of gross regional product composition, agrarian or industrial vocation, labor. Chapter 2 contributes to the literature on exploratory spatial data analysis with a application to a panel of 77 regions in the period 1994-2008. It provides an analysis of spatial patterns and it extends the theoretical framework of growth regressions controlling for spatial correlation and heterogeneity. Chapter 3 analyses the national demographic patterns since 1960 and provides a review of the policies on maternity leave and family benefits. Data sources are the Statistical Yearbooks of USSR, the Statistical Yearbooks of the Russian Soviet Federative Socialist Republic and the Demographic Yearbooks of Russia. Chapter 4 analyses the demographic patterns in light of the theoretical framework of the Becker model, the Second Demographic Transition and an economic-crisis argument. With national data from 1960, the theoretically issue of the pro or countercyclical relation between income and fertility is graphically analyzed and discussed, together with female employment and education. With regional data after 1994 different panel data models are tested. Individual level data from the Russian Longitudinal Monitoring Survey are employed using the logit model. Chapter 5 employs data from the Generations and Gender Survey by UNECE to focus on postponement and second births intentions. Postponement is studied through cohort analysis of mean maternal age at first birth, while the methodology used for second birth intentions is the ordered logit model.
Resumo:
Background. Human small cell lung cancer (SCLC) accounting for approximately 15-20% of all lung cancers, is an aggressive tumor with high propensity for early regional and distant metastases. Although the initial tumor rate response to chemotherapy is very high, SCLC relapses after approximately 4 months in ED and 12 months in LD. Basal cell carcinoma (BCC) is the most prevalent cancer in the western world, and its incidence is increasing worldwide. This type of cancer rarely metastasizes and the death rate is extraordinary low. Surgery is curative for most of the patients, but for those that develop locally advanced or metastatic BCC there is currently no effective treatment. Both types of cancer have been deeply investigated and genetic alterations, MYCN amplification (MA) among the most interesting, have been found. These could become targets of new pharmacological therapies. Procedures. We created and characterized novel BLI xenograft orthotopic mouse models of SCLC to evaluate the tumor onset and progression and the efficacy of new pharmacological strategies. We compared an in vitro model with a transgenic mouse model of BCC, to investigate and delineate the canonical HH signalling pathway and its connections with other molecular pathways. Results and conclusions. The orthotopic models showed latency and progression patterns similar to human disease. Chemotherapy treatments improved survival rates and validated the in vivo model. The presence of MA and overexpression were confirmed in each model and we tested the efficacy of a new MYCN inhibitor in vitro. Preliminar data of BCC models highlighted Hedgehog pathway role and underlined the importance of both in vitro and in vivo strategies to achieve a better understanding of the pathology and to evaluate the applicability of new therapeutic compounds
Resumo:
The goal of the present research is to define a Semantic Web framework for precedent modelling, by using knowledge extracted from text, metadata, and rules, while maintaining a strong text-to-knowledge morphism between legal text and legal concepts, in order to fill the gap between legal document and its semantics. The framework is composed of four different models that make use of standard languages from the Semantic Web stack of technologies: a document metadata structure, modelling the main parts of a judgement, and creating a bridge between a text and its semantic annotations of legal concepts; a legal core ontology, modelling abstract legal concepts and institutions contained in a rule of law; a legal domain ontology, modelling the main legal concepts in a specific domain concerned by case-law; an argumentation system, modelling the structure of argumentation. The input to the framework includes metadata associated with judicial concepts, and an ontology library representing the structure of case-law. The research relies on the previous efforts of the community in the field of legal knowledge representation and rule interchange for applications in the legal domain, in order to apply the theory to a set of real legal documents, stressing the OWL axioms definitions as much as possible in order to enable them to provide a semantically powerful representation of the legal document and a solid ground for an argumentation system using a defeasible subset of predicate logics. It appears that some new features of OWL2 unlock useful reasoning features for legal knowledge, especially if combined with defeasible rules and argumentation schemes. The main task is thus to formalize legal concepts and argumentation patterns contained in a judgement, with the following requirement: to check, validate and reuse the discourse of a judge - and the argumentation he produces - as expressed by the judicial text.
Resumo:
This PhD Thesis includes five main parts on diverse topics. The first two parts deal with the trophic ecology of wolves in Italy consequently to a recent increase of wild ungulates abundance. Data on wolf diet across time highlighted how wild ungulates are important food resource for wolves in Italy. Increasing wolf population, increasing numbers of wild ungulates and decreasing livestock consume are mitigating wolf-man conflicts in Italy in the near future. In the third part, non-invasive genetic sampling techniques were used to obtain genotypes and genders of about 400 wolves. Thus, wolf packs were genetically reconstructed using diverse population genetic and parentage software. Combining the results on pack structure and genetic relatedness with sampling locations, home ranges of wolf packs and dispersal patterns were identified. These results, particularly important for the conservation management of wolves in Italy, illustrated detailed information that can be retrieved from genetic identification of individuals. In the fourth part, wolf locations were combined with environmental information obtained as GIS-layers. Modern species distribution models (niche models) were applied to infer potential wolf distribution and predation risk. From the resulting distribution maps, information pastures with the highest risk of depredation were derived. This is particularly relevant as it allows identifying those areas under danger of carnivore attack on livestock. Finally, in the fifth part, habitat suitability models were combined with landscape genetic analysis. On one side landscape genetic analyses on the Italian wolves provided new information on the dynamics and connectivity of the population and, on the other side, a profound analysis of the effects that habitat suitability methods had on the parameterization of landscape genetic analyses was carried out to contributed significantly to landscape genetic theory.