2 resultados para factor XI deficiency
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
IF1, the endogenous inhibitor protein of mitochondrial F1Fo-ATPase, has raised interest in cancer research due to its overexpression in solid tumours compared to normal tissues. Physiologically, IF1 protects cells from energy depletion by limiting the ATP hydrolytic activity of ATP synthase triggered by mitochondrial depolarization caused by oxygen deficiency as it occurs during ischemic episodes. Considering both the physiological function of IF1 and that cancer cells in solid tumour are frequently exposed to oxygen deprivation, we hypothesized that IF1 overexpression represents a strategy that cancer cells develop to protect themselves from energy depletion under conditions of low oxygen availability. To assess this, we assayed the bioenergetic changes in 143B and HCT116 cancer cells with different metabolic features following stable silencing of IF1. Interestingly, we found that in both cell lines exposed to oxygen deprivation conditions the presence of IF1 limits the energy dissipation due to the activation of the ATP hydrolytic activity of ATP synthase. Furthermore, the analyses of cellular growth and viability revealed that the IF1 silencing inhibited proliferation in the highly glycolytic 143B cells, while it induced more than 50% of cellular death in HCT116 OXPHOS-dependent cells, indicating that the energetic advantage conferred by IF1 is essential for cancer cell proliferation or survival depending on the energy metabolism of each cell line. Moreover, under mitochondrial depolarization conditions, both mitophagy and mitochondrial biogenesis markers were found up-regulated in IF1-expressing cells only, thus indicating a continuous renewal and preservation of the mitochondrial mass. Taken together, our results sustain the idea that IF1 overexpression supports cancer cell adaptation to hypoxic or anoxic conditions also favouring the proliferation of re-oxygenated cells by promptly providing functional mitochondria.
Resumo:
In the brain, mutations in SLC25A12 gene encoding AGC1 cause an ultra-rare genetic disease reported as a developmental and epileptic encephalopathy associated with global cerebral hypomyelination. Symptoms of the disease include diffused hypomyelination, arrested psychomotor development, severe hypotonia, seizures and are common to other neurological and developmental disorders. Amongst the biological components believed to be most affected by AGC1 deficiency are oligodendrocytes, glial cells responsible for myelination. Recent studies (Poeta et al, 2022) have also shown how altered levels of transcription factors and epigenetic modifications greatly affect proliferation and differentiation in oligodendrocyte precursor cells (OPCs). In this study we explore the transcriptomic landscape of Agc1 in two different system models: OPCs silenced for Agc1 and iPSCs from human patients differentiated to neural progenitors. Analyses range from differential expression analysis, alternative splicing, master regulator analysis. ATAC-seq results on OPCs were integrated with results from RNA-Seq to assess the activity of a TF based on the accessibility data from its putative targets, which allows to integrate RNA-Seq data to infer their role as either activators or repressors. All the findings for this model were also integrated with early data from iPSCs RNA-seq results, looking for possible commonalities between the two different system models, among which we find a downregulation in genes encoding for SREBP, a transcription factor regulating fatty acids biosynthesis, a key process for myelination which could explain the hypomyelinated state of patients. We also find that in both systems cells tend to form more neurites, likely losing their ability to differentiate, considering their progenitor state. We also report several alterations in the chromatin state of cells lacking Agc1, which confirms the hypothesis for which Agc1 is not a disease restricted only to metabolic alterations in the cells, but there is a profound shift of the regulatory state of these cells.