7 resultados para eye-movements

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The term Congenital Nystagmus (Early Onset Nystagmus or Infantile Nystagmus Syndrome) refers to a pathology characterised by an involuntary movement of the eyes, which often seriously reduces a subject’s vision. Congenital Nystagmus (CN) is a specific kind of nystagmus within the wider classification of infantile nystagmus, which can be best recognized and classified by means of a combination of clinical investigations and motility analysis; in some cases, eye movement recording and analysis are indispensable for diagnosis. However, interpretation of eye movement recordings still lacks of complete reliability; hence new analysis techniques and precise identification of concise parameters directly related to visual acuity are necessary to further support physicians’ decisions. To this aim, an index computed from eye movement recordings and related to the visual acuity of a subject is proposed in this thesis. This estimator is based on two parameters: the time spent by a subject effectively viewing a target (foveation time - Tf) and the standard deviation of eye position (SDp). Moreover, since previous studies have shown that visual acuity largely depends on SDp, a data collection pilot study was also conducted with the purpose of specifically identifying eventual slow rhythmic component in the eye position and to characterise in more detail the SDp. The results are presented in this thesis. In addition, some oculomotor system models are reviewed and a new approach to those models, i.e. the recovery of periodic orbits of the oculomotor system in patients with CN, is tested on real patients data. In conclusion, the results obtained within this research consent to completely and reliably characterise the slow rhythmic component sometimes present in eye position recordings of CN subjects and to better classify the different kinds of CN waveforms. Those findings can successfully support the clinicians in therapy planning and treatment outcome evaluation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Human brain is provided with a flexible audio-visual system, which interprets and guides responses to external events according to spatial alignment, temporal synchronization and effectiveness of unimodal signals. The aim of the present thesis was to explore the possibility that such a system might represent the neural correlate of sensory compensation after a damage to one sensory pathway. To this purpose, three experimental studies have been conducted, which addressed the immediate, short-term and long-term effects of audio-visual integration on patients with Visual Field Defect (VFD). Experiment 1 investigated whether the integration of stimuli from different modalities (cross-modal) and from the same modality (within-modal) have a different, immediate effect on localization behaviour. Patients had to localize modality-specific stimuli (visual or auditory), cross-modal stimulus pairs (visual-auditory) and within-modal stimulus pairs (visual-visual). Results showed that cross-modal stimuli evoked a greater improvement than within modal stimuli, consistent with a Bayesian explanation. Moreover, even when visual processing was impaired, cross-modal stimuli improved performance in an optimal fashion. These findings support the hypothesis that the improvement derived from multisensory integration is not attributable to simple target redundancy, and prove that optimal integration of cross-modal signals occurs in processing stage which are not consciously accessible. Experiment 2 examined the possibility to induce a short term improvement of localization performance without an explicit knowledge of visual stimulus. Patients with VFD and patients with neglect had to localize weak sounds before and after a brief exposure to a passive cross-modal stimulation, which comprised spatially disparate or spatially coincident audio-visual stimuli. After exposure to spatially disparate stimuli in the affected field, only patients with neglect exhibited a shifts of auditory localization toward the visual attractor (the so called Ventriloquism After-Effect). In contrast, after adaptation to spatially coincident stimuli, both neglect and hemianopic patients exhibited a significant improvement of auditory localization, proving the occurrence of After Effect for multisensory enhancement. These results suggest the presence of two distinct recalibration mechanisms, each mediated by a different neural route: a geniculo-striate circuit and a colliculus-extrastriate circuit respectively. Finally, Experiment 3 verified whether a systematic audio-visual stimulation could exert a long-lasting effect on patients’ oculomotor behaviour. Eye movements responses during a visual search task and a reading task were studied before and after visual (control) or audio-visual (experimental) training, in a group of twelve patients with VFD and twelve controls subjects. Results showed that prior to treatment, patients’ performance was significantly different from that of controls in relation to fixations and saccade parameters; after audiovisual training, all patients reported an improvement in ocular exploration characterized by fewer fixations and refixations, quicker and larger saccades, and reduced scanpath length. Similarly, reading parameters were significantly affected by the training, with respect to specific impairments observed in left and right hemisphere–damaged patients. The present findings provide evidence that a systematic audio-visual stimulation may encourage a more organized pattern of visual exploration with long lasting effects. In conclusion, results from these studies clearly demonstrate that the beneficial effects of audio-visual integration can be retained in absence of explicit processing of visual stimulus. Surprisingly, an improvement of spatial orienting can be obtained not only when a on-line response is required, but also after either a brief or a long adaptation to audio-visual stimulus pairs, so suggesting the maintenance of mechanisms subserving cross-modal perceptual learning after a damage to geniculo-striate pathway. The colliculus-extrastriate pathway, which is spared in patients with VFD, seems to play a pivotal role in this sensory compensation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Visual search and oculomotor behaviour are believed to be very relevant for athlete performance, especially for sports requiring refined visuo-motor coordination skills. Modern coaches believe that a correct visuo-motor strategy may be part of advanced training programs. In this thesis two experiments are reported in which gaze behaviour of expert and novice athletes were investigated while they were doing a real sport specific task. The experiments concern two different sports: judo and soccer. In each experiment, number of fixations, fixation locations and mean fixation duration (ms) were considered. An observational analysis was done at the end of the paper to see perceptual differences between near and far space. Purpose: The aim of the judo study was to delineate differences in gaze behaviour characteristics between a population of athletes and one of non athletes. Aspects specifically investigated were: search rate, search order and viewing time across different conditions in a real-world task. The second study was aimed at identifying gaze behaviour in varsity soccer goalkeepers while facing a penalty kick executed with instep and inside foot. Then an attempt has been done to compare the gaze strategies of expert judoka and soccer goalkeepers in order to delineate possible differences related to the different conditions of reacting to events occurring in near (peripersonal) or far (extrapersonal) space. Judo Methods: A sample of 9 judoka (black belt) and 11 near judoka (white belt) were studied. Eye movements were recorded at 500Hz using a video based eye tracker (EyeLink II). Each subject participated in 40 sessions for about 40 minutes. Gaze behaviour was considered as average number of locations fixated per trial, the average number of fixations per trial, and mean fixation duration. Soccer Methods: Seven (n = 7) intermediate level male volunteered for the experiment. The kickers and goalkeepers, had at least varsity level soccer experience. The vision-in-action (VIA) system (Vickers 1996; Vickers 2007) was used to collect the coupled gaze and motor behaviours of the goalkeepers. This system integrated input from a mobile eye tracking system (Applied Sciences Laboratories) with an external video of the goalkeeper’s saving actions. The goalkeepers took 30 penalty kicks on a synthetic pitch in accordance with FIFA (2008) laws. Judo Results: Results indicate that experts group differed significantly from near expert for fixations duration, and number of fixations per trial. The expert judokas used a less exhaustive search strategy involving fewer fixations of longer duration than their novice counterparts and focused on central regions of the body. The results showed that in defence and attack situation expert group did a greater number of transitions with respect to their novice counterpart. Soccer Results: We found significant main effect for the number of locations fixated across outcome (goal/save) but not for foot contact (instep/inside). Participants spent more time fixating the areas in instep than inside kick and in goal than in save situation. Mean and standard error in search strategy as a result of foot contact and outcome indicate that the most gaze behaviour start and finish on ball interest areas. Conclusions: Expert goalkeepers tend to spend more time in inside-save than instep-save penalty, differences that was opposite in scored penalty kick. Judo results show that differences in visual behaviour related to the level of expertise appear mainly when the test presentation is continuous, last for a relatively long period of time and present a high level of uncertainty with regard to the chronology and the nature of events. Expert judoist performers “anchor” the fovea on central regions of the scene (lapel and face) while using peripheral vision to monitor opponents’ limb movements. The differences between judo and soccer gaze strategies are discussed on the light of physiological and neuropsychological differences between near and far space perception.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The cardiovascular regulation undergoes wide changes in the different states of sleepwake cycle. In particular, the relationship between spontaneous fluctuations in heart period and arterial pressure clearly shows differences between the two sleep states. In non rapid-eye-movement sleep, heart rhythm is under prevalent baroreflex control, whereas in rapid-eye-movement sleep central autonomic commands prevail (Zoccoli et al., 2001). Moreover, during rapid-eye-movement sleep the cardiovascular variables show wide fluctuations around their mean value. In particular, during rapid-eyemovement sleep, the arterial pressure shows phasic hypertensive events which are superimposed upon the tonic level of arterial pressure. These phasic increases in arterial pressure are accompanied by an increase in heart rate (Sei & Morita, 1996; Silvani et al., 2005). Thus, rapid-eye-movement sleep may represent an “autonomic stress test” for the cardiovascular system, able to unmask pathological patterns of cardiovascular regulation (Verrier et al. 2005), but this hypothesis has never been tested experimentally. The aim of this study was to investigate whether rapid-eye-movement sleep may reveal derangements in central autonomic cardiovascular control in an experimental model of essential hypertension. The study was performed in Spontaneously Hypertensive Rats, which represent the most widely used model of essential hypertension, and allow full control of genetic and environmental confounding factors. In particular, we analyzed the cardiovascular, electroencephalogram, and electromyogram changes associated with phasic hypertensive events during rapid-eyemovement sleep in Spontaneously Hypertensive Rats and in their genetic Wistar Kyoto control strain. Moreover, we studied also a group of Spontaneously Hypertensive Rats made phenotypically normotensive by means of a chronic treatment with an angiotensin converting enzyme inhibitor, the Enalapril maleate, from the age of four weeks to the end of the experiment. All rats were implanted with electrodes for electroencephalographic and electromyographic recordings and with an arterial catheter for arterial pressure measurement. After six days for postoperative recovery, the rats were studied for five days, at an age of ten weeks.The study indicated that the peak of mean arterial pressure increase during the phasic hypertensive events in rapid-eye-movement sleep did not differ significantly between Spontaneously Hypertensive Rats and Wistar Kyoto rats, while on the other hand Spontaneously Hypertensive Rats showed a reduced increase in the frequency of theta rhythm and a reduced tachicardia with respect to Wistar Kyoto rats. The same pattern of changes in mean arterial pressure, heart period, and theta frequency was observed between Spontaneously Hypertensive Rats and Spontaneously Hypertensive Rats treated with Enalapril maleate. Spontaneously Hypertensive Rats do not differ from Wistar Kyoto rats only in terms of arterial hypertension, but also due to multiple unknown genetic differences. Spontaneously Hypertensive Rats were developed by selective breeding of Wistar Kyoto rats based only on the level of arterial pressure. However, in this process, multiple genes possibly unrelated to hypertension may have been selected together with the genetic determinants of hypertension (Carley et al., 2000). This study indicated that Spontaneously Hypertensive Rats differ from Wistar Kyoto rats, but not from Spontaneously Hypertensive Rats treated with Enalapril maleate, in terms of arterial pH and theta frequency. This feature may be due to genetic determinants unrelated to hypertension. In sharp contrast, the persistence of differences in the peak of heart period decrease and the peak of theta frequency increase during phasic hypertensive events between Spontaneously Hypertensive Rats and Spontaneously Hypertensive Rats treated with Enalapril maleate demonstrates that the observed reduction in central autonomic control of the cardiovascular system in Spontaneously Hypertensive Rats is not an irreversible consequence of inherited genetic determinants. Rather, the comparison between Spontaneously Hypertensive Rats and Spontaneously Hypertensive Rats treated with Enalapril maleate indicates that the observed differences in central autonomic control are the result of the hypertension per se. This work supports the view that the study of cardiovascular regulation in sleep provides fundamental insight on the pathophysiology of hypertension, and may thus contribute to the understanding of this disease, which is a major health problem in European countries (Wolf-Maier et al., 2003) with its burden of cardiac, vascular, and renal complications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ren and colleagues (2006) found that saccades to visual targets became less accurate when somatosensory information about hand location was added, suggesting that saccades rely mainly on vision. We conducted two kinematic experiments to examine whether or not reaching movements would also show such strong reliance on vision. In Experiment 1, subjects used their dominant right hand to perform reaches, with or without a delay, to an external visual target or to their own left fingertip positioned either by the experimenter or by the participant. Unlike saccades, reaches became more accurate and precise when proprioceptive information was available. In Experiment 2, subjects reached toward external or bodily targets with differing amounts of visual information. Proprioception improved performance only when vision was limited. Our results indicate that reaching movements, unlike saccades, are improved rather than impaired by the addition of somatosensory information.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the last decade the interest for submarine instability grew up, driven by the increasing exploitation of natural resources (primary hydrocarbons), the emplacement of bottom-lying structures (cables and pipelines) and by the development of coastal areas, whose infrastructures increasingly protrude to the sea. The great interest for this topic promoted a number of international projects such as: STEAM (Sediment Transport on European Atlantic Margins, 93-96), ENAM II (European North Atlantic Margin, 96-99), GITEC (Genesis and Impact of Tsunamis on the European Coast 92-95), STRATAFORM (STRATA FORmation on Margins, 95-01), Seabed Slope Process in Deep Water Continental Margin (Northwest Gulf of Mexico, 96-04), COSTA (Continental slope Stability, 00-05), EUROMARGINS (Slope Stability on Europe’s Passive Continental Margin), SPACOMA (04-07), EUROSTRATAFORM (European Margin Strata Formation), NGI's internal project SIP-8 (Offshore Geohazards), IGCP-511: Submarine Mass Movements and Their Consequences (05-09) and projects indirectly related to instability processes, such as TRANSFER (Tsunami Risk ANd Strategies For the European region, 06-09) or NEAREST (integrated observations from NEAR shore sourcES of Tsunamis: towards an early warning system, 06-09). In Italy, apart from a national project realized within the activities of the National Group of Volcanology during the framework 2000-2003 “Conoscenza delle parti sommerse dei vulcani italiani e valutazione del potenziale rischio vulcanico”, the study of submarine mass-movement has been underestimated until the occurrence of the landslide-tsunami events that affected Stromboli on December 30, 2002. This event made the Italian Institutions and the scientific community more aware of the hazard related to submarine landslides, mainly in light of the growing anthropization of coastal sectors, that increases the vulnerability of these areas to the consequences of such processes. In this regard, two important national projects have been recently funded in order to study coastal instabilities (PRIN 24, 06-08) and to map the main submarine hazard features on continental shelves and upper slopes around the most part of Italian coast (MaGIC Project). The study realized in this Thesis is addressed to the understanding of these processes, with particular reference to Stromboli submerged flanks. These latter represent a natural laboratory in this regard, as several kind of instability phenomena are present on the submerged flanks, affecting about 90% of the entire submerged areal and often (strongly) influencing the morphological evolution of subaerial slopes, as witnessed by the event occurred on 30 December 2002. Furthermore, each phenomenon is characterized by different pre-failure, failure and post-failure mechanisms, ranging from rock-falls, to turbidity currents up to catastrophic sector collapses. The Thesis is divided into three introductive chapters, regarding a brief review of submarine instability phenomena and related hazard (cap. 1), a “bird’s-eye” view on methodologies and available dataset (cap. 2) and a short introduction on the evolution and the morpho-structural setting of the Stromboli edifice (cap. 3). This latter seems to play a major role in the development of largescale sector collapses at Stromboli, as they occurred perpendicular to the orientation of the main volcanic rift axis (oriented in NE-SW direction). The characterization of these events and their relationships with successive erosive-depositional processes represents the main focus of cap.4 (Offshore evidence of large-scale lateral collapses on the eastern flank of Stromboli, Italy, due to structurally-controlled, bilateral flank instability) and cap. 5 (Lateral collapses and active sedimentary processes on the North-western flank of Stromboli Volcano), represented by articles accepted for publication on international papers (Marine Geology). Moreover, these studies highlight the hazard related to these catastrophic events; several calamities (with more than 40000 casualties only in the last two century) have been, in fact, the direct or indirect result of landslides affecting volcanic flanks, as observed at Oshima-Oshima (1741) and Unzen Volcano (1792) in Japan (Satake&Kato, 2001; Brantley&Scott, 1993), Krakatau (1883) in Indonesia (Self&Rampino, 1981), Ritter Island (1888), Sissano in Papua New Guinea (Ward& Day, 2003; Johnson, 1987; Tappin et al., 2001) and Mt St. Augustine (1883) in Alaska (Beget& Kienle, 1992). Flank landslide are also recognized as the most important and efficient mass-wasting process on volcanoes, contributing to the development of the edifices by widening their base and to the growth of a volcaniclastic apron at the foot of a volcano; a number of small and medium-scale erosive processes are also responsible for the carving of Stromboli submarine flanks and the transport of debris towards the deeper areas. The characterization of features associated to these processes is the main focus of cap. 6; it is also important to highlight that some small-scale events are able to create damage to coastal areas, as also witnessed by recent events of Gioia Tauro 1978, Nizza, 1979 and Stromboli 2002. The hazard potential related to these phenomena is, in fact, very high, as they commonly occur at higher frequency with respect to large-scale collapses, therefore being more significant in terms of human timescales. In the last chapter (cap. 7), a brief review and discussion of instability processes identified on Stromboli submerged flanks is presented; they are also compared with respect to analogous processes recognized in other submerged areas in order to shed lights on the main factors involved in their development. Finally, some applications of multibeam data to assess the hazard related to these phenomena are also discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many psychophysical studies suggest that target depth and direction during reaches are processed independently, but the neurophysiological support to this view is so far limited. Here, we investigated the representation of reach depth and direction by single neurons in an area of the medial posterior parietal cortex (V6A). Single-unit activity was recorded from V6A in two Macaca fascicularis monkeys performing a fixation-to-reach task to targets at different depths and directions. We found that in a substantial percentage of V6A neurons depth and direction signals jointly influenced fixation, planning and arm movement-related activity in 3D space. While target depth and direction were equally encoded during fixation, depth tuning became stronger during arm movement planning, execution and target holding. The spatial tuning of fixation activity was often maintained across epochs, and this occurred more frequently in depth. These findings support for the first time the existence of a common neural substrate for the encoding of target depth and direction during reaching movements in the posterior parietal cortex. Present results also highlight the presence in V6A of several types of cells that process independently or jointly eye position and arm movement planning and execution signals in order to control reaches in 3D space. It is possible that depth and direction influence also the metrics of the reach action and that this effect on the reach kinematic variables can account for the spatial tuning we found in V6A neural activity. For this reason, we recorded and analyzed behavioral data when one monkey performed reaching movements in 3-D space. We evaluated how the target spatial position, in particular target depth and target direction, affected the kinematic parameters and trajectories describing the motor action properties.