3 resultados para existing
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
Over the last decades, the growing evidence of human-caused climate change has raised awareness of the consequences of exceeding global temperature by 2˚C. This awareness has led to a contemporary approach to the conceptualization and management of green adaptation policies in spatial planning. This thesis aims to develop a comprehensive methodology for assessing the adaptability of existing neighborhoods to green strategies. The reliability of the proposed method is examined in the cities of Bologna and Imola and proved to be applicable in other geoghraphical locations. This thesis integrates three key themes of conceptual and implementation principles for urban green adaptation. This thesis initially defines methods for narrowing uncertainties in urban planning energy forecasting modeling by exploring the roles of integrated energy planning. The second is by exploring green retrofitting strategies in building, this thesis examines the effects of various energy-saving factors in roofing scenarios including a green roof, rooftop greenhouse, and insolated roof. Lastly, this thesis analyzes green strategies in urban spaces to enhance thermal comfort through facing urban heat exposure related to urban heat island effects. The roles of integrated energy policies and green strategic thinking are discussed to highlight various aspects of green adaptation on the neighborhood scale. This thesis develops approaches by which cities can face the challenges of current green urban planning and connect the conceptual and practical aspects of green spatial planning. Another point that this thesis highlight is that due to the interdependency of individuals and places, it is difficult to assure whether all the adaptation policies on a large scale are enhancing the resiliency of the neighborhood or they are simply shuffling the vulnerability through the individuals and places. Besides, it asserts that neglecting to reflect on these reallocations of the effects generates serious complications, and will result in long-term dysfunctional consequences.
Resumo:
The aim of this work is to investigate the seismic improvement obtained through external strengthening structures applied on existing reinforced concrete buildings. An innovative integration with pre-assembled technological envelope components is also presented with the aim of achieving a holistic renovation. Particular attention was paid to the timber solution with an innovative post-tensioned connection between cross-laminated timber panels, which was the subject of an experimental campaign
Resumo:
Existing bridges built in the last 50 years face challenges due to states far different than those envisaged when they were designed, due to increased loads, ageing of materials, and poor maintenance. For post-tensioned bridges, the need emerged for reliable engineering tools for the evaluation of their capacity in case of steel corrosion due to lack of mortar injection. This can lead to sudden brittle collapses, highlighting the need for proper maintenance and monitoring. This thesis proposes a peak strength model for corroded strands, introducing a “group coefficient” that aims at considering corrosion variability in the wires constituting the strands. The application of the introduced model in a deterministic approach leads to the proposal of strength curves for corroded strands, which represent useful engineering tools for estimating their maximum strength considering both geometry of the corrosion and steel material parameters. Together with the proposed ultimate displacement curves, constitutive laws of the steel material reduced by the effects of corrosion can be obtained. The effects of corroded strands on post-tensioned beams can be evaluated through the reduced bending moment-curvature diagram accounting for these reduced stress-strain relationships. The application of the introduced model in a probabilistic approach allows to estimate peak strength probability functions and consecutive design-oriented safety factors to consider corrosion effects in safety assessment verifications. Both approaches consider two procedures that are based on the knowledge level of the corrosion in the strands. On the sidelines of this main research line, this thesis also presents a study of a seismic upgrading intervention of a case-study bridge through HDRB isolators providing a simplified procedure for the identification of the correct device. The study also investigates the effects due to the variability of the shear modulus of the rubber material of the HDRB isolators on the structural response of the isolated bridge.