3 resultados para excitation-energies

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

60.00% 60.00%

Publicador:

Resumo:

This thesis work has been developed in the framework of a new experimental campaign, proposed by the NUCL-EX Collaboration (INFN III Group), in order to progress in the understanding of the statistical properties of light nuclei, at excitation energies above particle emission threshold, by measuring exclusive data from fusion-evaporation reactions. The determination of the nuclear level density in the A~20 region, the understanding of the statistical behavior of light nuclei with excitation energies ~3 A.MeV, and the measurement of observables linked to the presence of cluster structures of nuclear excited levels are the main physics goals of this work. On the theory side, the contribution to this project given by this work lies in the development of a dedicated Monte-Carlo Hauser-Feshbach code for the evaporation of the compound nucleus. The experimental part of this thesis has consisted in the participation to the measurement 12C+12C at 95 MeV beam energy, at Laboratori Nazionali di Legnaro - INFN, using the GARFIELD+Ring Counter(RCo) set-up, from the beam-time request to the data taking, data reduction, detector calibrations and data analysis. Different results of the data analysis are presented in this thesis, together with a theoretical study of the system, performed with the new statistical decay code. As a result of this work, constraints on the nuclear level density at high excitation energy for light systems ranging from C up to Mg are given. Moreover, pre-equilibrium effects, tentatively interpreted as alpha-clustering effects, are put in evidence, both in the entrance channel of the reaction and in the dissipative dynamics on the path towards thermalisation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The cardiomyocyte is a complex biological system where many mechanisms interact non-linearly to regulate the coupling between electrical excitation and mechanical contraction. For this reason, the development of mathematical models is fundamental in the field of cardiac electrophysiology, where the use of computational tools has become complementary to the classical experimentation. My doctoral research has been focusing on the development of such models for investigating the regulation of ventricular excitation-contraction coupling at the single cell level. In particular, the following researches are presented in this thesis: 1) Study of the unexpected deleterious effect of a Na channel blocker on a long QT syndrome type 3 patient. Experimental results were used to tune a Na current model that recapitulates the effect of the mutation and the treatment, in order to investigate how these influence the human action potential. Our research suggested that the analysis of the clinical phenotype is not sufficient for recommending drugs to patients carrying mutations with undefined electrophysiological properties. 2) Development of a model of L-type Ca channel inactivation in rabbit myocytes to faithfully reproduce the relative roles of voltage- and Ca-dependent inactivation. The model was applied to the analysis of Ca current inactivation kinetics during normal and abnormal repolarization, and predicts arrhythmogenic activity when inhibiting Ca-dependent inactivation, which is the predominant mechanism in physiological conditions. 3) Analysis of the arrhythmogenic consequences of the crosstalk between β-adrenergic and Ca-calmodulin dependent protein kinase signaling pathways. The descriptions of the two regulatory mechanisms, both enhanced in heart failure, were integrated into a novel murine action potential model to investigate how they concur to the development of cardiac arrhythmias. These studies show how mathematical modeling is suitable to provide new insights into the mechanisms underlying cardiac excitation-contraction coupling and arrhythmogenesis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The world grapples with climate change from fossil fuel reliance, prompting Europe to pivot to renewable energy. Among renewables, biomass is a bioenergy and bio-carbon source, used to create high-value biomolecules, replacing fossil-based products. Alkyl levulinates, derived from biomass, hold promise as bio-additives and biofuels, especially via acid solvolysis of hexose sugars, necessitating further exploration. Alkyl levulinate's potential extends to converting into γ-valerolactone (GVL), a bio-solvent produced via hydrogenation with molecular-hydrogen. Hydrogen, a key reagent and energy carrier, aids renewable energy integration. This thesis delves into a biorefinery system study, aligning with sustainability goals, integrating biomass valorization, energy production, and hydrogen generation. It investigates optimizing technologies for butyl levulinate production and subsequent GVL hydrogenation. Sustainability remains pivotal, reflecting the global shift towards renewable and carbon bio-resources. The research initially focuses on experimenting with the optimal technology for producing butyl levulinate from biomass-derived hexose fructose. It examines the solvolysis process, investigating optimal conditions, kinetic modeling, and the impact of solvents on fructose conversion. The subsequent part concentrates on the technological aspect of hydrogenating butyl levulinate into GVL. It includes conceptual design, simulation, and optimization of the fructose-to-GVL process scheme based on process intensification. In the final part, the study applies the process to a real case study in Normandy, France, adapting it to local biomass availability and wind energy. It defines a methodology for designing and integrating the energy-supply system, evaluating different scenarios. Sustainability assessment using economic, environmental, and social indicators culminates in an overall sustainability index, indicating scenarios integrating the GVL biorefinery system with wind power and hydrogen energy storage as promising due to high profitability and reduced environmental impact. Sensitivity analyses validate the methodology's reliability, potentially extending to other technological systems.