4 resultados para evaluation algorithm

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The scale down of transistor technology allows microelectronics manufacturers such as Intel and IBM to build always more sophisticated systems on a single microchip. The classical interconnection solutions based on shared buses or direct connections between the modules of the chip are becoming obsolete as they struggle to sustain the increasing tight bandwidth and latency constraints that these systems demand. The most promising solution for the future chip interconnects are the Networks on Chip (NoC). NoCs are network composed by routers and channels used to inter- connect the different components installed on the single microchip. Examples of advanced processors based on NoC interconnects are the IBM Cell processor, composed by eight CPUs that is installed on the Sony Playstation III and the Intel Teraflops pro ject composed by 80 independent (simple) microprocessors. On chip integration is becoming popular not only in the Chip Multi Processor (CMP) research area but also in the wider and more heterogeneous world of Systems on Chip (SoC). SoC comprehend all the electronic devices that surround us such as cell-phones, smart-phones, house embedded systems, automotive systems, set-top boxes etc... SoC manufacturers such as ST Microelectronics , Samsung, Philips and also Universities such as Bologna University, M.I.T., Berkeley and more are all proposing proprietary frameworks based on NoC interconnects. These frameworks help engineers in the switch of design methodology and speed up the development of new NoC-based systems on chip. In this Thesis we propose an introduction of CMP and SoC interconnection networks. Then focusing on SoC systems we propose: • a detailed analysis based on simulation of the Spidergon NoC, a ST Microelectronics solution for SoC interconnects. The Spidergon NoC differs from many classical solutions inherited from the parallel computing world. Here we propose a detailed analysis of this NoC topology and routing algorithms. Furthermore we propose aEqualized a new routing algorithm designed to optimize the use of the resources of the network while also increasing its performance; • a methodology flow based on modified publicly available tools that combined can be used to design, model and analyze any kind of System on Chip; • a detailed analysis of a ST Microelectronics-proprietary transport-level protocol that the author of this Thesis helped developing; • a simulation-based comprehensive comparison of different network interface designs proposed by the author and the researchers at AST lab, in order to integrate shared-memory and message-passing based components on a single System on Chip; • a powerful and flexible solution to address the time closure exception issue in the design of synchronous Networks on Chip. Our solution is based on relay stations repeaters and allows to reduce the power and area demands of NoC interconnects while also reducing its buffer needs; • a solution to simplify the design of the NoC by also increasing their performance and reducing their power and area consumption. We propose to replace complex and slow virtual channel-based routers with multiple and flexible small Multi Plane ones. This solution allows us to reduce the area and power dissipation of any NoC while also increasing its performance especially when the resources are reduced. This Thesis has been written in collaboration with the Advanced System Technology laboratory in Grenoble France, and the Computer Science Department at Columbia University in the city of New York.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Myocardial perfusion quantification by means of Contrast-Enhanced Cardiac Magnetic Resonance images relies on time consuming frame-by-frame manual tracing of regions of interest. In this Thesis, a novel automated technique for myocardial segmentation and non-rigid registration as a basis for perfusion quantification is presented. The proposed technique is based on three steps: reference frame selection, myocardial segmentation and non-rigid registration. In the first step, the reference frame in which both endo- and epicardial segmentation will be performed is chosen. Endocardial segmentation is achieved by means of a statistical region-based level-set technique followed by a curvature-based regularization motion. Epicardial segmentation is achieved by means of an edge-based level-set technique followed again by a regularization motion. To take into account the changes in position, size and shape of myocardium throughout the sequence due to out of plane respiratory motion, a non-rigid registration algorithm is required. The proposed non-rigid registration scheme consists in a novel multiscale extension of the normalized cross-correlation algorithm in combination with level-set methods. The myocardium is then divided into standard segments. Contrast enhancement curves are computed measuring the mean pixel intensity of each segment over time, and perfusion indices are extracted from each curve. The overall approach has been tested on synthetic and real datasets. For validation purposes, the sequences have been manually traced by an experienced interpreter, and contrast enhancement curves as well as perfusion indices have been computed. Comparisons between automatically extracted and manually obtained contours and enhancement curves showed high inter-technique agreement. Comparisons of perfusion indices computed using both approaches against quantitative coronary angiography and visual interpretation demonstrated that the two technique have similar diagnostic accuracy. In conclusion, the proposed technique allows fast, automated and accurate measurement of intra-myocardial contrast dynamics, and may thus address the strong clinical need for quantitative evaluation of myocardial perfusion.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Photovoltaic (PV) solar panels generally produce electricity in the 6% to 16% efficiency range, the rest being dissipated in thermal losses. To recover this amount, hybrid photovoltaic thermal systems (PVT) have been devised. These are devices that simultaneously convert solar energy into electricity and heat. It is thus interesting to study the PVT system globally from different point of views in order to evaluate advantages and disadvantages of this technology and its possible uses. In particular in Chapter II, the development of the PVT absorber numerical optimization by a genetic algorithm has been carried out analyzing different internal channel profiles in order to find a right compromise between performance and technical and economical feasibility. Therefore in Chapter III ,thanks to a mobile structure built into the university lab, it has been compared experimentally electrical and thermal output power from PVT panels with separated photovoltaic and solar thermal productions. Collecting a lot of experimental data based on different seasonal conditions (ambient temperature,irradiation, wind...),the aim of this mobile structure has been to evaluate average both thermal and electrical increasing and decreasing efficiency values obtained respect to separate productions through the year. In Chapter IV , new PVT and solar thermal equation based models in steady state conditions have been developed by software Dymola that uses Modelica language. This permits ,in a simplified way respect to previous system modelling softwares, to model and evaluate different concepts about PVT panel regarding its structure before prototyping and measuring it. Chapter V concerns instead the definition of PVT boundary conditions into a HVAC system . This was made trough year simulations by software Polysun in order to finally assess the best solar assisted integrated structure thanks to F_save(solar saving energy)factor. Finally, Chapter VI presents the conclusion and the perspectives of this PhD work.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis aimed at addressing some of the issues that, at the state of the art, avoid the P300-based brain computer interface (BCI) systems to move from research laboratories to end users’ home. An innovative asynchronous classifier has been defined and validated. It relies on the introduction of a set of thresholds in the classifier, and such thresholds have been assessed considering the distributions of score values relating to target, non-target stimuli and epochs of voluntary no-control. With the asynchronous classifier, a P300-based BCI system can adapt its speed to the current state of the user and can automatically suspend the control when the user diverts his attention from the stimulation interface. Since EEG signals are non-stationary and show inherent variability, in order to make long-term use of BCI possible, it is important to track changes in ongoing EEG activity and to adapt BCI model parameters accordingly. To this aim, the asynchronous classifier has been subsequently improved by introducing a self-calibration algorithm for the continuous and unsupervised recalibration of the subjective control parameters. Finally an index for the online monitoring of the EEG quality has been defined and validated in order to detect potential problems and system failures. This thesis ends with the description of a translational work involving end users (people with amyotrophic lateral sclerosis-ALS). Focusing on the concepts of the user centered design approach, the phases relating to the design, the development and the validation of an innovative assistive device have been described. The proposed assistive technology (AT) has been specifically designed to meet the needs of people with ALS during the different phases of the disease (i.e. the degree of motor abilities impairment). Indeed, the AT can be accessed with several input devices either conventional (mouse, touchscreen) or alterative (switches, headtracker) up to a P300-based BCI.