6 resultados para epoxidized phenolic novolac resins

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Phenol and cresols represent a good example of primary chemical building blocks of which 2.8 million tons are currently produced in Europe each year. Currently, these primary phenolic building blocks are produced by refining processes from fossil hydrocarbons: 5% of the world-wide production comes from coal (which contains 0.2% of phenols) through the distillation of the tar residue after the production of coke, while 95% of current world production of phenol is produced by the distillation and cracking of crude oil. In nature phenolic compounds are present in terrestrial higher plants and ferns in several different chemical structures while they are essentially absent in lower organisms and in animals. Biomass (which contain 3-8% of phenols) represents a substantial source of secondary chemical building blocks presently underexploited. These phenolic derivatives are currently used in tens thousand of tons to produce high cost products such as food additives and flavours (i.e. vanillin), fine chemicals (i.e. non-steroidal anti-inflammatory drugs such as ibuprofen or flurbiprofen) and polymers (i.e. poly p-vinylphenol, a photosensitive polymer for electronic and optoelectronic applications). European agrifood waste represents a low cost abundant raw material (250 millions tons per year) which does not subtract land use and processing resources from necessary sustainable food production. The class of phenolic compounds is essentially constituted by simple phenols, phenolic acids, hydroxycinnamic acid derivatives, flavonoids and lignans. As in the case of coke production, the removal of the phenolic contents from biomass upgrades also the residual biomass. Focusing on the phenolic component of agrifood wastes, huge processing and marketing opportunities open since phenols are used as chemical intermediates for a large number of applications, ranging from pharmaceuticals, agricultural chemicals, food ingredients etc. Following this approach we developed a biorefining process to recover the phenolic fraction of wheat bran based on enzymatic commercial biocatalysts in completely water based process, and polymeric resins with the aim of substituting secondary chemical building blocks with the same compounds naturally present in biomass. We characterized several industrial enzymatic product for their ability to hydrolize the different molecular features that are present in wheat bran cell walls structures, focusing on the hydrolysis of polysaccharidic chains and phenolics cross links. This industrial biocatalysts were tested on wheat bran and the optimized process allowed to liquefy up to the 60 % of the treated matter. The enzymatic treatment was also able to solubilise up to the 30 % of the alkali extractable ferulic acid. An extraction process of the phenolic fraction of the hydrolyzed wheat bran based on an adsorbtion/desorption process on styrene-polyvinyl benzene weak cation-exchange resin Amberlite IRA 95 was developed. The efficiency of the resin was tested on different model system containing ferulic acid and the adsorption and desorption working parameters optimized for the crude enzymatic hydrolyzed wheat bran. The extraction process developed had an overall yield of the 82% and allowed to obtain concentrated extracts containing up to 3000 ppm of ferulic acid. The crude enzymatic hydrolyzed wheat bran and the concentrated extract were finally used as substrate in a bioconversion process of ferulic acid into vanillin through resting cells fermentation. The bioconversion process had a yields in vanillin of 60-70% within 5-6 hours of fermentation. Our findings are the first step on the way to demonstrating the economical feasibility for the recovery of biophenols from agrifood wastes through a whole crop approach in a sustainable biorefining process.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Phenolic compounds play a central role in peach fruit colour, flavour and health attributes. Phenolic profiles of several peaches and nectarines and most of the structural genes leading to the anthocyanin synthesis in peach fruit have been studied. Moreover, crosses of red and non-red peaches suggested that a major gene controls skin colour of the extreme phenotypes ‘highlighter’ and ‘full-red’. However, there is no data about either the ‘flavan-3-ols specific genes’ (ANR and LAR) or the regulation of the flavonoid metabolism in this crop. In the present study, we determined the concentration of phenolic compounds in the yellowfleshed nectarine Prunus persica cv. ‘Stark Red Gold’ during fruit growth and ripening. We examined the transcript levels of the main structural genes of the flavonoid pathway. Gene expression of the biosynthetic genes correlated well with the concentration of flavan-3-ols, which was very low at the beginning of fruit development, strongly increased at mid-development and finally decreased again during ripening. In contrast, the only gene transcript which correlated with anthocyanin concentration was PpUFGT, which was high at the beginning and end of fruit growth, remaining low during the other developmental stages. These patterns of gene expression could be explained by the involvement of different transcription factors, which up-regulate anthocyanin biosynthesis (PpMYB10 and PpbHLH3), or repress (PpMYBL2) the transcription of the structural genes. These transcription factors appeared to be involved also in the regulation of the lightinduced anthocyanin accumulation in ‘Stark Red Gold’ nectarines, suggesting that they play a critical role in the regulation of flavonoid biosynthesis in peaches and nectarines in response to both developmental and environmental stimuli. Phenolic profiles and expression patterns of the main flavonoid structural and regulatory genes were also determined for the extreme phenotypes denominated ‘highlighter’ and ‘full-red’ and hypotheses about the control of phenolic compounds content in these fruit are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Food technologies today mean reducing agricultural food waste, improvement of food security, enhancement of food sensory properties, enlargement of food market and food economies. Food technologists must be high-skilled technicians with good scientific knowledge of food hygiene, food chemistry, industrial technologies and food engineering, sensory evaluation experience and analytical chemistry. Their role is to apply the modern vision of science in the field of human nutrition, rising up knowledge in food science. The present PhD project starts with the aim of studying and improving frozen fruits quality. Freezing process in very powerful in preserve initial raw material characteristics, but pre-treatment before the freezing process are necessary to improve quality, in particular to improve texture and enzymatic activity of frozen foods. Osmotic Dehydration (OD) and Vacuum Impregnation (VI), are useful techniques to modify fruits and vegetables composition and prepare them to freezing process. These techniques permit to introduce cryo-protective agent into the food matrices, without significant changes of the original structure, but cause a slight leaching of important intrinsic compounds. Phenolic and polyphenolic compounds for example in apples and nectarines treated with hypertonic solutions are slightly decreased, but the effect of concentration due to water removal driven out from the osmotic gradient, cause a final content of phenolic compounds similar to that of the raw material. In many experiment, a very important change in fruit composition regard the aroma profile. This occur in strawberries osmo-dehydrated under vacuum condition or under atmospheric pressure condition. The increment of some volatiles, probably due to fermentative metabolism induced by the osmotic stress of hypertonic treatment, induce a sensory profile modification of frozen fruits, that in some way result in a better acceptability of consumer, that prefer treated frozen fruits to untreated frozen fruits. Among different processes used, a very interesting result was obtained with the application of a osmotic pre-treatment driven out at refrigerated temperature for long time. The final quality of frozen strawberries was very high and a peculiar increment of phenolic profile was detected. This interesting phenomenon was probably due to induction of phenolic biological synthesis (for example as reaction to osmotic stress), or to hydrolysis of polymeric phenolic compounds. Aside this investigation in the cryo-stabilization and dehydrofreezing of fruits, deeper investigation in VI techniques were carried out, as studies of changes in vacuum impregnated prickly pear texture, and in use of VI and ultrasound (US) in aroma enrichment of fruit pieces. Moreover, to develop sensory evaluation tools and analytical chemistry determination (of volatiles and phenolic compounds), some researches were bring off and published in these fields. Specifically dealing with off-flavour development during storage of boiled potato, and capillary zonal electrophoresis (CZE) and high performance liquid chromatography (HPLC) determination of phenolic compounds.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This research assessed the value chain of gum and resins, which are available in four woreda in the southern lowlands of Ethiopia. They are Moyale Somali, Moyale Oromia, Dhas and Dire woreda. The output of this research is the elaboration of three value chains. The first is a general one for all the woreda, while the other two concern the Moyale and Dubluk markets. The assessed products are the gum arabic from Acacia trees and the resin exuded by the dunkhal tree - Boswellia family. The aim of this study was not only to understand the way in which resins and gum gain value through the chain and the profit each stakeholder gains, but more importantly how pastoralists use resin and gum collection to diversify their income. The first chapter analyses what it means to be a pastoralist in the Moyale area and its challenges. The second chapter describes how the policies of the central state influenced the pastoral access to rangelands and water and the way in which this contributed to the increase of conflict among the different groups. A particular focus is on the settlement. The third chapter describes the different ethnic groups living in the studied area and their management system to preserve resources and cope with the dry season. This chapter considers the dynamic evolution of the relations among the various groups in terms of negotiating access to resources while facing political and climatic challenges. The fourth chapter illustrates the physical context and the environment, and the way in which it has been managed in order to preserve the pastoral lifestyle. The fifth chapter describes the characteristics of gum and resins in the studied area. Finally, the sixth chapter describes how the value chain methodology was applied in this specific study and its outputs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Epoxy resins are mainly produced by reacting bisphenol A with epichlorohydrin. Growing concerns about the negative health effects of bisphenol A are urging researchers to find alternatives. In this work diphenolic acid is suggested, as it derives from levulinic acid, obtained from renewable resources. Nevertheless, it is also synthesized from phenol, from fossil resources, which, in the current paper has been substituted by plant-based phenols. Two interesting derivatives were identified: diphenolic acid from catechol and from resorcinol. Epichlorohydrin on the other hand, is highly carcinogenic and volatile, leading to a tremendous risk of exposure. Thus, two approaches have been investigated and compared with epichlorohydrin. The resulting resins have been characterized to find an appropriate application, as epoxy are commonly used for a wide range of products, ranging from composite materials for boats to films for food cans. Self-curing capacity was observed for the resin deriving from diphenolic acid from catechol. The glycidyl ether of the diphenolic acid from resorcinol, a fully renewable compound, was cured in isothermal and non-isothermal tests tracked by DSC. Two aliphatic amines were used, namely 1,4-butanediamine and 1,6-hexamethylendiamine, in order to determine the effect of chain length on the curing of an epoxy-amine system and determine the kinetic parameters. The latter are crucial to plan any industrial application. Both diamines demonstrated superior properties compared to traditional bisphenol A-amine systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Epoxy resins are widely used in many applications, such as paints, adhesives and matrices for composites materials, since they present the possibility to be easily and conveniently tailored in order to display a unique combination of characteristics. In literature, various examples of bio-based epoxy resins produced from a wide range of renewable sources can be found. Nevertheless, the toxicity and safety of curing agents have not been deeply investigated and it was observed that all of them still present some environmental drawback. Therefore, the development of new environmentally friendly fully bio-based epoxy systems is of great importance for designing green and sustainable materials. In this context, the present project aims at further exploring the possibility of using bio-based compounds as curing agents for epoxy resin precursors. A preliminary evaluation of several amine-based compounds demonstrated the feasibility of using Adenine as epoxy resin hardener. In order to better understand the crosslinking mechanism, the reaction of Adenine with the mono-epoxy compound Glycidyl 2-methylphenyl ether (G2MPE), was study by 1H-NMR analysis. Then Adenine was investigated as hardener of Diglycidil ether of bisphenol A (DGEBA), which is the simplest epoxy resin based on bisphenol A, in order to determine the best hardener/resin stoichiometric ratio, and evaluate the crosslinking kinetics and conversion and the final mechanical properties of the cured resin. Then, Adenine was tested as hardener of commercial epoxy resins, in particular the infusion resin Elan-tron® EC 157 (Elantas), the impregnation resin EPON™ Resin 828 (Hexion) and the bio-based resin SUPER SAP® CLR (Entropyresins). Such systems were used for the production of composites materials reinforced with chopped recycled carbon fibers and natural fibers (flax and jute). The thermo-mechanical properties of these materials have been studied in comparison with those ones of composites obtained with the same thermosetting resin reinforced with chopped virgin carbon fibers.