7 resultados para epithelial scrape
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
Neoplastic overgrowth depends on the cooperation of several mutations ultimately leading to major rearrangements in cellular behaviour. The molecular crosstalk occurring between precancerous and normal cells strongly influences the early steps of the tumourigenic process as well as later stages of the disease. Precancerous cells are often removed by cell death from normal tissues but the mechanisms responsible for such fundamental safeguard processes remain in part elusive. To gain insight into these phenomena I took advantage of the clonal analysis methods available in Drosophila for studying the phenotypes due to loss of function of the neoplastic tumour suppressor lethal giant larvae (lgl). I found that lgl mutant cells growing in wild-type imaginal wing discs are subject to the phenomenon of cell competition and are eliminated by JNK-dependent cell death because they express very low levels of dMyc oncoprotein compared to those in the surrounding tissue. Indeed, in non-competitive backgrounds lgl mutant clones are able to overgrow and upregulate dMyc, overwhelming the neighbouring tissue and forming tumourous masses that display several cancer hallmarks. These phenotypes are completely abolished by reducing dMyc abundance within mutant cells while increasing it in lgl clones growing in a competitive context re-establishes their tumourigenic potential. Similarly, the neoplastic growth observed upon the oncogenic cooperation between lgl mutation and activated Ras/Raf/MAPK signalling was found to be characterised by and dependent on the ability of cancerous cells to upregulate dMyc with respect to the adjacent normal tissue, through both transcriptional and post-transcriptional mechanisms, thereby confirming its key role in lgl-induced tumourigenesis. These results provide first evidence that the dMyc oncoprotein is required in lgl mutant tissue to promote invasive overgrowth in developing and adult epithelial tissues and that dMyc abundance inside versus outside lgl mutant clones plays a key role in driving neoplastic overgrowth.
Resumo:
In veterinary medicine, the ability to classify mammary tumours based on the molecular profile and also determine whether the immunophenotype of the regional lymph node and/or systemic metastases is equal to that of the primary tumor may be predictive on the estimation of the effectiveness of various cancer treatments that can be scheduled. Therefore, aims, developed as projects, of the past three years have been (1) to define the molecular phenotype of feline mammary carcinomas and their lymph node metastases according to a previous modified algorithm and to demonstrate the concordance or discordance of the molecular profile between the primary tumour and lymph node metastasis, (2) to analyze, in female dogs, the relationship between the primary mammary tumor and its lymph node metastasis based on immunohistochemical molecular characterization in order to develop the most specific prognostic-predictive models and targeted therapeutic options, and (3) to evaluate the molecular trend of cancer from its primary location to systemic metastases in three cats and two dogs with mammary tumors. The studies on mammary tumours, particularly in dogs, have drawn gradually increasing attention not exclusively to the epithelial component, but also to the myoepithelial cells. The lack of complete information on a valid panel of markers for the identification of these cells in the normal and neoplastic mammary gland and lack of investigation of immunohistochemical changes from an epithelial to a mesenchymal phenotype, was the aim of a parallel research. While investigating mammary tumours, it was noticed that only few studies had focused on the expression of CD117. Therefore, it was decided to further deepen the knowledge in order to characterize the immunohistochemical staining of CD117 in normal and neoplastic mammary tissue of the dog, and to correlate CD117 immunohistochemical results with mammary histotype, histological stage (invasiveness), Ki67 index and patient survival time.
Resumo:
Cancer research and development of targeting agents in this field is based on robust studies using preclinical models. The failure rate of standardized treatment approaches for several solid tumors has led to the urgent need to fine-tune more sophisticated and faithful preclinical models able to recapitulate the features of in vivo human tumors, with the final aim to shed light on new potential therapeutic targets. Epithelial Ovarian Cancer (EOC) serous histotype (HGSOC) is one of the most lethal diseases in women due to its high aggressiveness (75% of patients diagnosed at FIGO III-IV state) and poor prognosis (less of 50% in 5 years), whose therapy often fails as chemoresistance sets in. This thesis aimed at using the novel perfusion-based bioreactor U-CUP that provides direct perfusion throughout the tumor tissue seeking to obtain an EOC 3D ex vivo model able to recapitulate the features of the original tumor including the tumor microenvironment and maintaining its cellular heterogeneity. Moreover, we optimized this approach so that it can be successfully applied to slow-frozen tumoral tissues, further extending the usefulness of this tool. We also investigated the effectiveness of Plasma Activated Ringer’s Lactate solution (PA-RL) against Epithelial Ovarian Cancer (EOC) serous histotype in both 2D and 3D cultures using ex-vivo specimens from HGSOC patients. We propose PA-RL as a novel therapy with local intraperitoneal administration, which could act on primary or metastatic ovarian tumors inducing a specific cancer cell death with reduced damage on the surrounding healthy tissues.
Resumo:
My PhD research period was focused on the anatomical, physiological and functional study of the gastrointestinal system on two different animal models. In two different contexts, the purpose of these two lines of research was contribute to understand how a specific genetic mutation or the adoption of a particular dietary supplement can affect gastrointestinal function. Functional gastrointestinal disorders are chronic conditions characterized by symptoms for which no organic cause can be found. Although symptoms are generally mild, a small subset of cases shows severe manifestations. This subset of patients may also have recurrent intestinal sub-occlusive episodes, but in absence of mechanical causes. This condition is referred to as chronic intestinal pseudo-obstruction, a rare, intractable chronic disease. Some mutations have been associated with CIPO. A novel causative RAD21 missense mutation was identified in a large consanguineous family, segregating a recessive form of CIPO. The present thesis was aimed to elucidate the mechanisms leading to neuropathy underlying CIPO via a recently developed conditional KI mouse carrying the RAD21 mutation. The experimental studies are based on the characterization and functional analysis of the conditional KI Rad21A626T mouse model. On the other hand aquaculture is increasing the global supply of foods. The species selected and feeds used affects the nutrients available from aquaculture, with a need to improve feed efficiency, both for economic and environmental reasons, but this will require novel innovative approaches. Nutritional strategies focused on the use of botanicals have attracted interest in animal production. Previous research indicates the positive results of using essential oils (EOs) as natural feed additives for several farmed animals. Therefore, the present study was designed to compare the effects of feed EO supplementation in two different forms (natural and composed of active ingredients obtained by synthesis) on the gastric mucosa in European sea bass.
Resumo:
During kidney transplant procedure transplanted organs can undergo ischaemia reperfusion phenomena, often associated with the onset of acute kidney damage, loss of kidney function and rejection. These events promote cell turnover to replace damaged cells and preserve kidney function, thus cells deriving from nephrons structures are highly voided in urine. Urine derived cells represents a promising cell source since they can be easily isolated and cultured. The aim of this project was to characterise Urine-derived Renal Epithelial Cells (URECs) from transplanted kidney and to evaluate how these cells react to the co-culture with immune cells. URECs expressed typical markers of kidney tubule epithelial cells (Cytokeratin and CD13), and a subpopulation of these cells expressed CD24 and CD133, which are markers of kidney epithelial progenitor cells. The expression of immunosuppressive molecules as HLA-G and CD73 was also observed. As matter of fact, during the co-culture with PBMCs, UREC suppressed the proliferation of CD4 and CD8 Lymphocytes and reduce the T helper 1 subset, while increasing the T regulatory counterpart. Also, preliminary data observed in this study indicated that the exposition to kidney damage associated molecule, such as NGAL, could significantly affect UREC viability and immunomodulatory capacity. These results add new information about the phenotype of urine cells obtained after kidney transplant and reveal that these cells show promising immunomodulatory properties, suggesting their potential application in personalized cell therapy approaches.
Resumo:
Plasma medicine is a branch of plasma-promising biomedical applications that uses cold atmospheric plasma (CAP) as a therapeutic agent in treating a wide range of medical conditions including cancer. Epithelial ovarian cancer (EOC) is a highly malignant and aggressive form of ovarian cancer, and most patients are diagnosed at advanced stages which significantly reduces the chances of successful treatment. Treatment resistance is also common, highlighting the need for novel therapies to be developed to treat EOC. Research in Plasma Medicine has revealed that plasma has unique properties suitable for biomedical applications and medical therapies, including responses to hormetic stimuli. However, the exact mechanisms by which CAP works at the molecular level are not yet fully understood. In this regard, the main goal of this thesis is to identify a possible adjuvant therapy for cancer, which could exert a cytotoxic effect, without damaging the surrounding healthy cells. An examination of different plasma-activated liquids (PALs) revealed their potential as effective tools for significantly inhibiting the growth of EOC. The dose-response profile between PALs and their targeted cytotoxic effects on EOC cells without affecting healthy cells was established. Additionally, it was validated that PALs exert distinct effects on different subtypes of EOC, possibly linked to the cells' metabolism. This suggests the potential for developing new, personalized anticancer strategies. Furthermore, it was observed that CAP treatment can alter the chemistry of a biomolecule present in PAL, impacting its cytotoxic activity. The effectiveness of the treatment was also preliminarily evaluated in 3D cultures, opening the door for further investigation of a possible correlation between the tumor microenvironment and PALs' resistance. These findings shed light on the intricate interplay between CAP and the liquid substrate and cell behaviour, providing valuable insights for the development of a novel and promising CAP-based cancer treatment for clinical application.
Resumo:
Epstein-Barr virus (EBV) establishes a lifelong asymptomatic infection by replicating its chromatinized genome, called episome, together with the host genome. EBV exhibits different latency-associated transcriptional repertoires that mirror its three-dimensional structures of the genome. CTCF, Cohesin and PARP1 are involved in maintaining viral latency and establishing episome architecture. Epstein-Barr virus-associated gastric cancer (EBVaGC) represents almost 10% of all gastric cancers globally. EBVaGC exhibit an intermediate viral transcription profile known as "Latency II", expressing specific viral genes and non-coding RNAs. In this study, we investigated the impact of PARP1 inhibition on CTCF/Cohesin binding in Type II latency. We observed a destabilization of the binding of both factors, leading to a disrupted three-dimensional architecture of the episomes and consequently, an altered viral gene expression. Despite sharing the same CTCF binding profile, Type I, II, and III latencies display different 3D episomal structures that correlate with variations in viral gene expression. Additionally, our analysis of H3K27ac-enriched chromatin interactions revealed differences between Type II latency episomes and a link to cellular transformation through docking of the EBV episomes at specific sites of the Human genome, thus promoting oncogene expression. Overall, this work provides insights into the role of PARP1 in maintaining active latency and novel mechanisms of EBV-induced cellular transformation.