7 resultados para energy recovery
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
This PhD thesis reports on car fluff management, recycling and recovery. Car fluff is the residual waste produced by car recycling operations, particularly from hulk shredding. Car fluff is known also as Automotive Shredder Residue (ASR) and it is made of plastics, rubbers, textiles, metals and other materials, and it is very heterogeneous both in its composition and in its particle size. In fact, fines may amount to about 50%, making difficult to sort out recyclable materials or exploit ASR heat value by energy recovery. This 3 years long study started with the definition of the Italian End-of-Life Vehicles (ELVs) recycling state of the art. A national recycling trial revealed Italian recycling rate to be around 81% in 2008, while European Community recycling target are set to 85% by 2015. Consequently, according to Industrial Ecology framework, a life cycle assessment (LCA) has been conducted revealing that sorting and recycling polymers and metals contained in car fluff, followed by recovering residual energy, is the route which has the best environmental perspective. This results led the second year investigation that involved pyrolysis trials on pretreated ASR fractions aimed at investigating which processes could be suitable for an industrial scale ASR treatment plant. Sieving followed by floatation reported good result in thermochemical conversion of polymers with polyolefins giving excellent conversion rate. This factor triggered ecodesign considerations. Ecodesign, together with LCA, is one of the Industrial Ecology pillars and it consists of design for recycling and design for disassembly, both aimed at the improvement of car components dismantling speed and the substitution of non recyclable material. Finally, during the last year, innovative plants and technologies for metals recovery from car fluff have been visited and tested worldwide in order to design a new car fluff treatment plant aimed at ASR energy and material recovery.
Resumo:
The increase in environmental and healthy concerns, combined with the possibility to exploit waste as a valuable energy resource, has led to explore alternative methods for waste final disposal. In this context, the energy conversion of Municipal Solid Waste (MSW) in Waste-To-Energy (WTE) power plant is increasing throughout Europe, both in terms of plants number and capacity, furthered by legislative directives. Due to the heterogeneous nature of waste, some differences with respect to a conventional fossil fuel power plant have to be considered in the energy conversion process. In fact, as a consequence of the well-known corrosion problems, the thermodynamic efficiency of WTE power plants typically ranging in the interval 25% ÷ 30%. The new Waste Framework Directive 2008/98/EC promotes production of energy from waste introducing an energy efficiency criteria (the so-called “R1 formula”) to evaluate plant recovery status. The aim of the Directive is to drive WTE facilities to maximize energy recovery and utilization of waste heat, in order to substitute energy produced with conventional fossil fuels fired power plants. This calls for novel approaches and possibilities to maximize the conversion of MSW into energy. In particular, the idea of an integrated configuration made up of a WTE and a Gas Turbine (GT) originates, driven by the desire to eliminate or, at least, mitigate limitations affecting the WTE conversion process bounding the thermodynamic efficiency of the cycle. The aim of this Ph.D thesis is to investigate, from a thermodynamic point of view, the integrated WTE-GT system sharing the steam cycle, sharing the flue gas paths or combining both ways. The carried out analysis investigates and defines the logic governing plants match in terms of steam production and steam turbine power output as function of the thermal powers introduced.
Resumo:
Microalgae are sun - light cell factories that convert carbon dioxide to biofuels, foods, feeds, and other bioproducts. The concept of microalgae cultivation as an integrated system in wastewater treatment has optimized the potential of the microalgae - based biofuel production. These microorganisms contains lipids, polysaccharides, proteins, pigments and other cell compounds, and their biomass can provide different kinds of biofuels such as biodiesel, biomethane and ethanol. The algal biomass application strongly depends on the cell composition and the production of biofuels appears to be economically convenient only in conjunction with wastewater treatment. The aim of this research thesis was to investigate a biological wastewater system on a laboratory scale growing a newly isolated freshwater microalgae, Desmodesmus communis, in effluents generated by a local wastewater reclamation facility in Cesena (Emilia Romagna, Italy) in batch and semi - continuous cultures. This work showed the potential utilization of this microorganism in an algae - based wastewater treatment; Desmodesmus communis had a great capacity to grow in the wastewater, competing with other microorganisms naturally present and adapting to various environmental conditions such as different irradiance levels and nutrient concentrations. The nutrient removal efficiency was characterized at different hydraulic retention times as well as the algal growth rate and biomass composition in terms of proteins, polysaccharides, total lipids and total fatty acids (TFAs) which are considered the substrate for biodiesel production. The biochemical analyses were coupled with the biomass elemental analysis which specified the amount of carbon and nitrogen in the algal biomass. Furthermore photosynthetic investigations were carried out to better correlate the environmental conditions with the physiology responses of the cells and consequently get more information to optimize the growth rate and the increase of TFAs and C/N ratio, cellular compounds and biomass parameter which are fundamental in the biomass energy recovery.
Resumo:
The growing interest in environmental protection has led to the development of emerging biotechnologies for environmental remediation also introducing the biorefinery concept. This work mainly aimed to evaluate the applicability of innovative biotechnologies for environmental remediation and bioenergy production, throught fermentative processes. The investigated biotechnologies for waste and wastewater treatment and for the valorisation of specific feedstocks and energy recovery, were mainly focused on four research lines. 1. Biotechnology for textile wastewater treatment and water reuse that involving anaerobic and aerobic processes in combination with membrane technologies. Combinations of different treatments were also implemented for water reuse in a textile company. 2. Biotechnology for the treatment of solid waste and leachate in landfill and for biogas production. Landfill operated as Bioreactor with recirculation of the generated leachate was proposed for organic matter biostabilisation and for ammonia removal from leachate by favouring the Anammox process. 3. An innovative two-stage anaerobic process for effective codigestion of waste from the dairy industry, as cheese whey and dairy manure, was studied by combining conventional fermentative processes with a simplified system design for enhancing biomethanisation. 4) The valorisation of the glycerol waste as surplus by-product of the biodiesel industry was investigated via microbial conversion to value-added chemicals, as 1,3-propanediol. The investigated fermentative processes have been successfully implemented and reached high yields of the produced bio-chemical. The studied biotechnological systems proved to be feasible for environmental remediation and bioenergy and chemicals production.
Resumo:
The relation between the intercepted light and orchard productivity was considered linear, although this dependence seems to be more subordinate to planting system rather than light intensity. At whole plant level not always the increase of irradiance determines productivity improvement. One of the reasons can be the plant intrinsic un-efficiency in using energy. Generally in full light only the 5 – 10% of the total incoming energy is allocated to net photosynthesis. Therefore preserving or improving this efficiency becomes pivotal for scientist and fruit growers. Even tough a conspicuous energy amount is reflected or transmitted, plants can not avoid to absorb photons in excess. The chlorophyll over-excitation promotes the reactive species production increasing the photoinhibition risks. The dangerous consequences of photoinhibition forced plants to evolve a complex and multilevel machine able to dissipate the energy excess quenching heat (Non Photochemical Quenching), moving electrons (water-water cycle , cyclic transport around PSI, glutathione-ascorbate cycle and photorespiration) and scavenging the generated reactive species. The price plants must pay for this equipment is the use of CO2 and reducing power with a consequent decrease of the photosynthetic efficiency, both because some photons are not used for carboxylation and an effective CO2 and reducing power loss occurs. Net photosynthesis increases with light until the saturation point, additional PPFD doesn’t improve carboxylation but it rises the efficiency of the alternative pathways in energy dissipation but also ROS production and photoinhibition risks. The wide photo-protective apparatus, although is not able to cope with the excessive incoming energy, therefore photodamage occurs. Each event increasing the photon pressure and/or decreasing the efficiency of the described photo-protective mechanisms (i.e. thermal stress, water and nutritional deficiency) can emphasize the photoinhibition. Likely in nature a small amount of not damaged photosystems is found because of the effective, efficient and energy consuming recovery system. Since the damaged PSII is quickly repaired with energy expense, it would be interesting to investigate how much PSII recovery costs to plant productivity. This PhD. dissertation purposes to improve the knowledge about the several strategies accomplished for managing the incoming energy and the light excess implication on photo-damage in peach. The thesis is organized in three scientific units. In the first section a new rapid, non-intrusive, whole tissue and universal technique for functional PSII determination was implemented and validated on different kinds of plants as C3 and C4 species, woody and herbaceous plants, wild type and Chlorophyll b-less mutant and monocot and dicot plants. In the second unit, using a “singular” experimental orchard named “Asymmetric orchard”, the relation between light environment and photosynthetic performance, water use and photoinhibition was investigated in peach at whole plant level, furthermore the effect of photon pressure variation on energy management was considered on single leaf. In the third section the quenching analysis method suggested by Kornyeyev and Hendrickson (2007) was validate on peach. Afterwards it was applied in the field where the influence of moderate light and water reduction on peach photosynthetic performances, water requirements, energy management and photoinhibition was studied. Using solar energy as fuel for life plant is intrinsically suicidal since the high constant photodamage risk. This dissertation would try to highlight the complex relation existing between plant, in particular peach, and light analysing the principal strategies plants developed to manage the incoming light for deriving the maximal benefits as possible minimizing the risks. In the first instance the new method proposed for functional PSII determination based on P700 redox kinetics seems to be a valid, non intrusive, universal and field-applicable technique, even because it is able to measure in deep the whole leaf tissue rather than the first leaf layers as fluorescence. Fluorescence Fv/Fm parameter gives a good estimate of functional PSII but only when data obtained by ad-axial and ab-axial leaf surface are averaged. In addition to this method the energy quenching analysis proposed by Kornyeyev and Hendrickson (2007), combined with the photosynthesis model proposed by von Caemmerer (2000) is a forceful tool to analyse and study, even in the field, the relation between plant and environmental factors such as water, temperature but first of all light. “Asymmetric” training system is a good way to study light energy, photosynthetic performance and water use relations in the field. At whole plant level net carboxylation increases with PPFD reaching a saturating point. Light excess rather than improve photosynthesis may emphasize water and thermal stress leading to stomatal limitation. Furthermore too much light does not promote net carboxylation improvement but PSII damage, in fact in the most light exposed plants about 50-60% of the total PSII is inactivated. At single leaf level, net carboxylation increases till saturation point (1000 – 1200 μmolm-2s-1) and light excess is dissipated by non photochemical quenching and non net carboxylative transports. The latter follows a quite similar pattern of Pn/PPFD curve reaching the saturation point at almost the same photon flux density. At middle-low irradiance NPQ seems to be lumen pH limited because the incoming photon pressure is not enough to generate the optimum lumen pH for violaxanthin de-epoxidase (VDE) full activation. Peach leaves try to cope with the light excess increasing the non net carboxylative transports. While PPFD rises the xanthophyll cycle is more and more activated and the rate of non net carboxylative transports is reduced. Some of these alternative transports, such as the water-water cycle, the cyclic transport around the PSI and the glutathione-ascorbate cycle are able to generate additional H+ in lumen in order to support the VDE activation when light can be limiting. Moreover the alternative transports seems to be involved as an important dissipative way when high temperature and sub-optimal conductance emphasize the photoinhibition risks. In peach, a moderate water and light reduction does not determine net carboxylation decrease but, diminishing the incoming light and the environmental evapo-transpiration request, stomatal conductance decreases, improving water use efficiency. Therefore lowering light intensity till not limiting levels, water could be saved not compromising net photosynthesis. The quenching analysis is able to partition absorbed energy in the several utilization, photoprotection and photo-oxidation pathways. When recovery is permitted only few PSII remained un-repaired, although more net PSII damage is recorded in plants placed in full light. Even in this experiment, in over saturating light the main dissipation pathway is the non photochemical quenching; at middle-low irradiance it seems to be pH limited and other transports, such as photorespiration and alternative transports, are used to support photoprotection and to contribute for creating the optimal trans-thylakoidal ΔpH for violaxanthin de-epoxidase. These alternative pathways become the main quenching mechanisms at very low light environment. Another aspect pointed out by this study is the role of NPQ as dissipative pathway when conductance becomes severely limiting. The evidence that in nature a small amount of damaged PSII is seen indicates the presence of an effective and efficient recovery mechanism that masks the real photodamage occurring during the day. At single leaf level, when repair is not allowed leaves in full light are two fold more photoinhibited than the shaded ones. Therefore light in excess of the photosynthetic optima does not promote net carboxylation but increases water loss and PSII damage. The more is photoinhibition the more must be the photosystems to be repaired and consequently the energy and dry matter to allocate in this essential activity. Since above the saturation point net photosynthesis is constant while photoinhibition increases it would be interesting to investigate how photodamage costs in terms of tree productivity. An other aspect of pivotal importance to be further widened is the combined influence of light and other environmental parameters, like water status, temperature and nutrition on peach light, water and phtosyntate management.
Resumo:
Studies on soil organic carbon (SOC) sequestration in perennial energy crops are available for North-Central Europe, while there is insufficient information for Southern Europe. This research was conducted in the Po Valley, a Mediterranean-temperate zone characterised by low SOC levels, due to intensive management. The aim was to assess the factors influencing SOC sequestration and its distribution through depth and within soil fractions, after a 9-year old conversion from two annual systems to Miscanthus (Miscanthus × giganteus) and giant reed (Arundo donax). The 13C natural abundance was used to evaluate the amount of SOC in annual and perennial species, and determine the percentage of carbon derived from perennial crops. SOC was significantly higher under perennial species, especially in the topsoil (0-0.15 m). After 9 years, the amount of C derived from Miscanthus was 18.7 Mg ha-1, mostly stored at 0-0.15 m, whereas the amount of C derived from giant reed was 34.7 Mg ha-1, evenly distributed through layers. Physical soil fractionation was combined with 13C abundance analysis. C derived from perennial crops was mainly found in macroaggregates. Under giant reed, more newly derived-carbon was stored in microaggregates and mineral fraction than under Miscanthus. A molecular approach based on denaturing gradient gel electrophoresis (DGGE) allowed to evaluate changes on microbial community, after the introduction of perennial crops. Functional aspects were investigated by determining relevant soil enzymes (β-glucosidase, urease, alkaline phosphatase). Perennial crops positively stimulated these enzymes, especially in the topsoil. DGGE profiles revealed that community richness was higher in perennial crops; Shannon index of diversity was influenced only by depth. In conclusion, Miscanthus and giant reed represent a sustainable choice for the recovery of soils exhausted by intensive management, also in Mediterranean conditions and this is relevant mainly because this geographical area is notoriously characterised by a rapid turnover of SOC.
Resumo:
Although its great potential as low to medium temperature waste heat recovery (WHR) solution, the ORC technology presents open challenges that still prevent its diffusion in the market, which are different depending on the application and the size at stake. Focusing on the micro range power size and low temperature heat sources, the ORC technology is still not mature due to the lack of appropriate machines and working fluids. Considering instead the medium to large size, the technology is already available but the investment is still risky. The intention of this thesis is to address some of the topical themes in the ORC field, paying special attention in the development of reliable models based on realistic data and accounting for the off-design performance of the ORC system and of each of its components. Concerning the “Micro-generation” application, this work: i) explores the modelling methodology, the performance and the optimal parameters of reciprocating piston expanders; ii) investigates the performance of such expander and of the whole micro-ORC system when using Hydrofluorocarbons as working fluid or their new low GWP alternatives and mixtures; iii) analyzes the innovative ORC reversible architecture (conceived for the energy storage), its optimal regulation strategy and its potential when inserted in typical small industrial frameworks. Regarding the “Industrial WHR” sector, this thesis examines the WHR opportunity of ORCs, with a focus on the natural gas compressor stations application. This work provides information about all the possible parameters that can influence the optimal sizing, the performance and thus the feasibility of installing an ORC system. New WHR configurations are explored: i) a first one, relying on the replacement of a compressor prime mover with an ORC; ii) a second one, which consists in the use of a supercritical CO2 cycle as heat recovery system.