2 resultados para endoplasmic reticulum aminopeptidase 1
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
Dendritic Cells (DCs) derived from human blood monocytes that have been nurtured in GM-CSF and IL-4, followed by maturation in a monocyte-conditioned medium, are the most potent APCs known. These DCs have many features of primary DCs, including the expression of molecules that enhance antigen capture and selective receptors that guide DCs to and from several sites in the body, where they elicit the T cell mediated immune response. For these features, immature DCs (iDC) loaded with tumor antigen and matured (mDC) with a standard cytokine cocktail, are used for therapeutic vaccination in clinical trials of different cancers. However, the efficacy of DCs in the development of immunocompetence is critically influenced by the type (whole lysate, proteins, peptides, mRNA), the amount and the time of exposure of the tumor antigens used for loading in the presentation phase. The aim of the present study was to create instruments to acquire more information about DC antigen uptake and presentation mechanisms to improve the clinical efficacy of DCbased vaccine. In particular, two different tumor antigen were studied: the monoclonal immunoglobulin (IgG or IgA) produced in Myeloma Multiple, and the whole lysate obtained from melanoma tissues. These proteins were conjugated with fluorescent probe (FITC) to evaluate the kinetic of tumor antigen capturing process and its localization into DCs, by cytofluorimetric and fluorescence microscopy analysis, respectively. iDC pulsed with 100μg of IgG-FITC/106 cells were monitored from 2 to 22 hours after loading. By the cytofluorimetric analysis it was observed that the monoclonal antibody was completely captured after 2 hours from pulsing, and was decreased into mDC in 5 hours after maturation stimulus. To monitor the lysate uptake, iDC were pulsed with 80μg of tumor lysate/106 cells, then were monitored in the 2h to 22 hours interval time after loading. Then, to reveal difference between increasing lysate concentration, iDC were loaded with 20-40-80-100-200-400μg of tumor lysate/106 cells and monitored at 2-4-8-13h from pulsing. By the cytofluorimetric analysis, it was observed that, the 20-40-80-100μg uptake, after 8 hours loading was completed reaching a plateau phase. For 200 and 400μg the mean fluorescence of cells increased until 13h from pulsing. The lysate localization into iDC was evaluated with conventional and confocal fluorescence microscopy analysis. In the 2h to 8h time interval from loading an intensive and diffuse fluorescence was observed within the cytoplasmic compartment. Moreover, after 8h, the lysate fluorescence appeared to be organized in a restricted cloudy-shaded area with a typical polarized aspect. In addition, small fluorescent spots clearly appeared with an increment in the number and fluorescence intensity. The nature of these spot-like formations and cloudy area is now being investigated detecting the colocalization of the fluorescence lysate and specific markers for lysosomes, autophagosomes, endoplasmic reticulum and MHCII positive vesicles.
Resumo:
Bone remodelling is a fundamental mechanism for removing and replacing bone during adaptation of the skeleton to mechanical loads. Skeletal unloading leads to severe hypoxia (1%O2) in the bone microenvironment resulting in imbalanced bone remodelling that favours bone resorption. Hypoxia, in vivo, is a physiological condition for osteocytes, 5% O2 is more likely physiological for osteocytes than 20% O2, as osteocytes are embedded deep inside the mineralized bone matrix. Osteocytes are thought to be the mechanosensors of bone and have been shown to orchestrate bone formation and resorption. Oxygen-deprived osteocytes seem undergo apoptosis and actively stimulate osteoclasts. Hypoxia and oxidative stress increase 150-kDa oxygen-regulated protein (ORP 150) expression in different cell types. It is a novel endoplasmic-reticulum-associated chaperone induced by hypoxia/ischemia. It well known that ORP 150 plays an important role in the cellular adaptation to hypoxia, as anti-apoptotic factor, and seems to be involved in osteocytes differentiations. The aims of the present study are 1) to determine the cellular and molecular response of the osteocytes at two different conditions of oxygen deprivation, 1% and 5% of O2 compared to the atmospheric oxygen concentration at several time points. 2) To clarify the role of hypoxic osteocytes in bone homeostasis through the detection of releasing of soluble factors (RANKL, OPG, PGE2 and Sclerostin). 3) To detect the activation of osteoclast and osteoblast induced by condition media collected from hypoxic and normoxic osteocytes. The data obtained in this study shows that hypoxia compromises the viability of osteocytes and induces apoptosis. Unlike in other cells types, ORP 150 in MLO-Y4 does not seem to be regulated early during hypoxia. The release of soluble factors and the evaluation of osteoclast and osteoblast activation shows that osteocytes, grown under severe oxygen deprivation, play a role in the regulation of both bone resorption and bone formation.