7 resultados para encoding flexibility
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
Primary CoQ10 deficiency diseases encompass a heterogeneous spectrum of clinical phenotypes. Among these, defect or mutation on COQ2 gene, encoding a para-hydroxybenzoate polyprenyl transferase, have been associated with different diseases. Understanding the functional and metabolic impact of COQ2 mutation and the consequent CoQ10 deficiency is still a matter of debate. To date the aetiology of the neurological phenotypes correlated to CoQ10 deficiency does not present a clear genotype-phenotype association. In addition to the metabolic alterations due to Coenzyme Q depletion, the impairment of mitochondrial function, associated with the reduced CoQ level, could play a significant role in the metabolic flexibility of cancer. This study aimed to characterize the effect of varying degrees of CoQ10 deficiency and investigate the multifaceted aspect of CoQ10 depletion and its impact on cell metabolism. To induced CoQ10 depletion, different cell models were used, employing a chemical and genome editing approach. In T67 and MCF-7 CoQ10 depletion was achieved by a competitive inhibitor of the enzyme, 4-nitrobenzoate (4-NB), whereas in SH-SY5Y the COQ2 gene was edited via CRISPR-Cas9 cutting edge technology.
Resumo:
The first part of the research project of the Co-Advisorship Ph.D Thesis was aimed to select the best Bifidobacterium longum strains suitable to set the basis of our study. We were looking for strains with the abilities to colonize the intestinal mucosa and with good adhesion capacities, so that we can test these strains to investigate their ability to induce apoptosis in “damaged” intestinal cells. Adhesion and apoptosis are the two process that we want to study to better understand the role of an adhesion protein that we have previously identified and that have top scores homologies with the recent serpin encoding gene identified in B. longum by Nestlè researchers. Bifidobacterium longum is a probiotic, known for its beneficial effects to the human gut and even for its immunomodulatory and antitumor activities. Recently, many studies have stressed out the intimate relation between probiotic bacteria and the GIT mucosa and their influence on human cellular homeostasis. We focused on the apoptotic deletion of cancer cells induced by B. longum. This has been valued in vitro, performing the incubation of three B.longum strains with enterocyte-like Caco- 2 cells, to evidence DNA fragmentation, a cornerstone of apoptosis. The three strains tested were defined for their adhesion properties using adhesion and autoaggregation assays. These features are considered necessary to select a probiotic strain. The three strains named B12, B18 and B2990 resulted respectively: “strong adherent”, “adherent” and “non adherent”. Then, bacteria were incubated with Caco-2 cells to investigate apoptotic deletion. Cocultures of Caco-2 cells with B. longum resulted positive in DNA fragmentation test, only when adherent strains were used (B12 and B18). These results indicate that the interaction with adherent B. longum can induce apoptotic deletion of Caco-2 cells, suggesting a role in cellular homeostasis of the gastrointestinal tract and in restoring the ecology of damaged colon tissues. These results were used to keep on researching and the strains tested were used as recipient of recombinant techniques aimed to originate new B.longum strains with enhanced capacity of apoptotic induction in “damaged” intestinal cells. To achieve this new goal it was decided to clone the serpin encoding gene of B. longum, so that we can understand its role in adhesion and apoptosis induction. Bifidobacterium longum has immunostimulant activity that in vitro can lead to apoptotic response of Caco-2 cell line. It secretes a hypothetical eukaryotic type serpin protein, which could be involved in this kind of deletion of damaged cells. We had previously characterised a protein that has homologies with the hypothetical serpin of B. longum (DD087853). In order to create Bifidobacterium serpin transformants, a B. longum cosmid library was screened with a PCR protocol using specific primers for serpin gene. After fragment extraction, the insert named S1 was sub-cloned into pRM2, an Escherichia coli - Bifidobacterium shuttle vector, to construct pRM3. Several protocols for B. longum transformation were performed and the best efficiency was obtained using MRS medium and raffinose. Finally bacterial cell supernatants were tested in a dotblot assay to detect antigens presence against anti-antitrypsin polyclonal antibody. The best signal was produced by one starin that has been renamed B. longum BLKS 7. Our research study was aimed to generate transformants able to over express serpin encoding gene, so that we can have the tools for a further study on bacterial apoptotic induction of Caco-2 cell line. After that we have originated new trasformants the next step to do was to test transformants abilities when exposed to an intestinal cell model. In fact, this part of the project was achieved in the Department of Biochemistry of the Medical Faculty of the University of Maribor, guest of the abroad supervisor of the Co-Advisorship Doctoral Thesis: Prof. Avrelija Cencic. In this study we examined the probiotic ability of some bacterial strains using intestinal cells from a 6 years old pig. The use of intestinal mammalian cells is essential to study this symbiosis and a functional cell model mimics a polarised epithelium in which enterocytes are separated by tight junctions. In this list of strains we have included the Bifidobacterium longum BKS7 transformant strain that we have previously originated; in order to compare its abilities. B. longum B12 wild type and B. longum BKS7 transformant and eight Lactobacillus strains of different sources were co-cultured with porcine small intestine epithelial cells (PSI C1) and porcine blood monocytes (PoM2) in Transwell filter inserts. The strains, including Lb. gasseri, Lb. fermentum, Lb. reuterii, Lb. plantarum and unidentified Lactobacillus from kenyan maasai milk and tanzanian coffee, were assayed for activation of cell lines, measuring nitric oxide by Griess reaction, H202 by tetramethylbenzidine reaction and O2 - by cytochrome C reduction. Cytotoxic effect by crystal violet staining and induction on metabolic activity by MTT cell proliferation assay were tested too. Transepithelial electrical resistance (TER) of polarised PSI C1 was measured during 48 hours co-culture. TER, used to observe epithelium permeability, decrease during pathogenesis and tissue becomes permeable to ion passive flow lowering epithelial barrier function. Probiotics can prevent or restore increased permeability. Lastly, dot-blot was achieved against Interleukin-6 of treated cells supernatants. The metabolic activity of PoM2 and PSI C1 increased slightly after co-culture not affecting mitochondrial functions. No strain was cytotoxic over PSI C1 and PoM2 and no cell activation was observed, as measured by the release of NO2, H202 and O2 - by PoM2 and PSI C1. During coculture TER of polarised PSI C1 was two-fold higher comparing with constant TER (~3000 ) of untreated cells. TER raise generated by bacteria maintains a low permeability of the epithelium. During treatment Interleukin-6 was detected in cell supernatants at several time points, confirming immunostimulant activity. All results were obtained using Lactobacillus paracasei Shirota e Carnobacterium divergens as controls. In conclusion we can state that both the list of putative probiotic bacteria and our new transformant strain of B. longum are not harmful when exposed to intestinal cells and could be selected as probiotics, because can strengthen epithelial barrier function and stimulate nonspecific immunity of intestinal cells on a pig cell model. Indeed, we have found out that none of the strains tested that have good adhesion abilities presents citotoxicity to the intestinal cells and that non of the strains tested can induce cell lines to produce high level of ROS, neither NO2. Moreover we have assayed even the capacity of producing certain citokynes that are correlated with immune response. The detection of Interleukin-6 was assayed in all our samples, including B.longum transformant BKS 7 strain, this result indicates that these bacteria can induce a non specific immune response in the intestinal cells. In fact, when we assayed the presence of Interferon-gamma in cells supernatant after bacterial exposure, we have no positive signals, that means that there is no activation of a specific immune response, thus confirming that these bacteria are not recognize as pathogen by the intestinal cells and are certainly not harmful for intestinal cells. The most important result is the measure of Trans Epithelial Electric Resistance that have shown how the intestinal barrier function get strengthen when cells are exposed to bacteria, due to a reduction of the epithelium permeability. We have now a new strain of B. longum that will be used for further studies above the mechanism of apoptotic induction to “damaged cells” and above the process of “restoring ecology”. This strain will be the basis to originate new transformant strains for Serpin encoding gene that must have better performance and shall be used one day even in clinical cases as in “gene therapy” for cancer treatment and prevention.
Resumo:
In the last decades, the increasing significance of “projectivization” (Lundin & Steinthórsson, 2003) has stimulated considerable interest in project-based organizations as new economic actors able to introduce a new logic of organizing work and weakening boundaries in favour of networks of collaborations. In these contexts, work is often delegated to project teams. Deciding whom to put on a project team is one of the biggest challenges faced by a project manager; in particular which characteristics rely on to compose and match effective teams. We address this issue, focusing on the individual flexibility (Raudsepp, 1990), as team composition variable that affects project team performance. Thus, the research question investigated is: Is it better to compose project teams with flexible team members or not flexible project team members to achieve higher levels of project performance? The temporary nature of PBOs involves that after achieving the purpose for which team members are enrolled, they are disbanded but their relationships remain, allowing them to be involved in future projects (Starkey, Barnatt & Tempest, 2000). Pre-existing relationships together with the current relationships create a network of relationships that yields some implications for project teams as well as for team members. We address this issue, exploring the following research question: To what extent is the individual flexibility influenced by the network structure? The conceptual framework is used to articulate the research questions investigated with respect to the Television drama serials production. Their project-team organizing combined with their capacity to dissolve and recreate over time make it an interesting field to develop. We contribute to the organizational literature, providing a clear operationalization of individual flexibility construct and its role on affecting project performance. Second, we contribute to the organizational network literature addressing the effects yielded by the network structure-structural holes and network closure- on the individual flexibility.
Resumo:
The dynamic character of proteins strongly influences biomolecular recognition mechanisms. With the development of the main models of ligand recognition (lock-and-key, induced fit, conformational selection theories), the role of protein plasticity has become increasingly relevant. In particular, major structural changes concerning large deviations of protein backbones, and slight movements such as side chain rotations are now carefully considered in drug discovery and development. It is of great interest to identify multiple protein conformations as preliminary step in a screening campaign. Protein flexibility has been widely investigated, in terms of both local and global motions, in two diverse biological systems. On one side, Replica Exchange Molecular Dynamics has been exploited as enhanced sampling method to collect multiple conformations of Lactate Dehydrogenase A (LDHA), an emerging anticancer target. The aim of this project was the development of an Ensemble-based Virtual Screening protocol, in order to find novel potent inhibitors. On the other side, a preliminary study concerning the local flexibility of Opioid Receptors has been carried out through ALiBERO approach, an iterative method based on Elastic Network-Normal Mode Analysis and Monte Carlo sampling. Comparison of the Virtual Screening performances by using single or multiple conformations confirmed that the inclusion of protein flexibility in screening protocols has a positive effect on the probability to early recognize novel or known active compounds.
Resumo:
In the present thesis I study the contribution to firm value of inventories management from a risk management perspective. I find a significant contribution of inventories to the value of risk management especially through the operating flexibility channel. In contrast, I do not find evidence supporting the view of inventories a reserve of liquidity. Inventories substitute, albeit not perfectly, derivatives or cash holdings. The substitution between hedging with derivatives and inventory is moderated by the correlation between cash flow and the underlying asset in the derivative contract. Hedge ratios increase with the effectiveness of derivatives. The decision to hedge with cash holdings or inventories is strongly influenced by the degree of complementarity between production factors and by cash flow volatility. In addition, I provide a risk management based explanation of the secular substitution between inventories and cash holdings documented, among others, in Bates et al. (2009), Journal of Finance. In a sample of U.S. firms between 1980 and 2006, I empirically confirm the negative relation between inventories and cash and provide evidence on the poor performance of investment cash flow sensitivities as a measure of financial constraints also in the case of inventories investment. This result can be explained by firms' scarce reliance on inventories as a reserve of liquidity. Finally, as an extension of my study, I contrast with empirical data the theoretical predictions of a model on the integrated management of inventories, trade credit and cash holdings.
Resumo:
The nature of concepts is a matter of intense debate in cognitive sciences. While traditional views claim that conceptual knowledge is represented in a unitary symbolic system, recent Embodied and Grounded Cognition theories (EGC) submit the idea that conceptual system is couched in our body and influenced by the environment (Barsalou, 2008). One of the major challenges for EGC is constituted by abstract concepts (ACs), like fantasy. Recently, some EGC proposals addressed this criticism, arguing that the ACs comprise multifaced exemplars that rely on different grounding sources beyond sensorimotor one, including interoception, emotions, language, and sociality (Borghi et al., 2018). However, little is known about how ACs representation varies as a function of life experiences and their use in communication. The theoretical arguments and empirical studies comprised in this dissertation aim to provide evidence on multiple grounding of ACs taking into account their varieties and flexibility. Study I analyzed multiple ratings on a large sample of ACs and identified four distinct subclusters. Study II validated this classification with an interference paradigm involving motor/manual, interoceptive, and linguistic systems during a difficulty rating task. Results confirm that different grounding sources are activated depending on ACs kind. Study III-IV investigate the variability of institutional concepts, showing that the higher the law expertise level, the stronger the concrete/emotional determinants in their representation. Study V introduced a novel interactive task in which abstract and concrete sentences serve as cues to simulate conversation. Analysis of language production revealed that the uncertainty and interactive exchanges increase with abstractness, leading to generating more questions/requests for clarifications with abstract than concrete sentences. Overall, results confirm that ACs are multidimensional, heterogeneous, and flexible constructs and that social and linguistic interactions are crucial to shaping their meanings. Investigating ACs in real-time dialogues may be a promising direction for future research.
Resumo:
Most cognitive functions require the encoding and routing of information across distributed networks of brain regions. Information propagation is typically attributed to physical connections existing between brain regions, and contributes to the formation of spatially correlated activity patterns, known as functional connectivity. While structural connectivity provides the anatomical foundation for neural interactions, the exact manner in which it shapes functional connectivity is complex and not yet fully understood. Additionally, traditional measures of directed functional connectivity only capture the overall correlation between neural activity, and provide no insight on the content of transmitted information, limiting their ability in understanding neural computations underlying the distributed processing of behaviorally-relevant variables. In this work, we first study the relationship between structural and functional connectivity in simulated recurrent spiking neural networks with spike timing dependent plasticity. We use established measures of time-lagged correlation and overall information propagation to infer the temporal evolution of synaptic weights, showing that measures of dynamic functional connectivity can be used to reliably reconstruct the evolution of structural properties of the network. Then, we extend current methods of directed causal communication between brain areas, by deriving an information-theoretic measure of Feature-specific Information Transfer (FIT) quantifying the amount, content and direction of information flow. We test FIT on simulated data, showing its key properties and advantages over traditional measures of overall propagated information. We show applications of FIT to several neural datasets obtained with different recording methods (magneto and electro-encephalography, spiking activity, local field potentials) during various cognitive functions, ranging from sensory perception to decision making and motor learning. Overall, these analyses demonstrate the ability of FIT to advance the investigation of communication between brain regions, uncovering the previously unaddressed content of directed information flow.