9 resultados para elevers syn
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
This thesis has the aim to give an overview about the tectonic history of the Epiligurian units, which crop out in the axial portion of the Northern Apennines fold-and-thrust belt, from a structural and thermal point of view, through a multiscalar and multitecnique approach. I focused on a key example of Epiligurian wedge-top basin, (Marzabotto Basin) proceeding from macro-to-microscale approach. The study started from a remote sensing analysis of the lineaments and morphostructures which affected the study area to obtain the regional faulting pattern and an overview about the main tectonic structures, used as basis for the structural investigation at the mesoscale. On the basis of this, it was possible to reconstruct the succession of tectonic events that affected the Marzabotto Basin, consisting in: i) two sets of thrusts indicating a NE-SW and NW-SE shortening of the sedimentary succession; ii) NE-SW-left lateral transtensional faults related to a strike-slip tectonic phase; iii) three main sets of extensional structures which cut and displace the previous thrusts. Normal faults are related to the post-orogenic evolution and have been dated with U-Th method, getting an age of Middle-Late Pleistocene. From a thermal point of view, apatite fission-tracks and (U-Th)/He analyses of detrital minerals and thermal modelling on the middle-upper Eocene siliciclastic deposits allowed me to better constrain the local exhumation history and correlate it with the large-scale tectonic evolution of the Northern Apennines. In particular, the Marzabotto Basin experienced a complex burial-exhumation history, consisting in two cooling cooling phases related to the growth of the Northern Apennines belt (Oligo-Miocene in age) and a later cooling which tracks the accretion in the orogenic wedge concomitant with rollback-driven extension (late Miocene-Pliocene in age). In conclusion it is possible to affirm that the study shed new light on poorly constrained elements of fold-and-thrust belt.
Resumo:
The objective was to analyse population structure and to determine genetic diversity of Erysiphe necator (syn. Uncinula necator) populations obtained from some vineyards located in the South-East Po valley (Italy). Powdery mildew is one of the most important fungal diseases of grapes (Vitis vinifera L.) throughout the world. The causal agent is the haploid, heterothallic ascomycete E. necator. It is an obligate biotrophic fungus and it can be found only on green organs of plants belonging to the family Vitaceae. For this pathogen, two sympatric populations (groups A and B) have been described in Europe and Australia. The two genetic groups differ at multiple genetic loci and previous studies reported a lack of interfertility among isolates of the two groups. There are now several well documented examples of plant pathogen species, such as Leptosphaeria maculans, Gaeumannomyces graminis var. tritici, Botrytis cinerea and Erysiphe syringae, which are indeed composed of genetically differentiated clades, that have led to the description of new groups or even new species. Several studies have suggested that genetic E. necator group A and B correlated with ecological features of the pathogen; some researchers proposed that group A isolates over-winter as resting mycelium within dormant buds, and in spring originate infected shoots, known as Flag shoots, while group B isolates would survive as ascospores in overwintering cleistothecia. However, the association between genetic groups and mode of over-wintering has been challenged by recent studies reporting that flag-shoot may be originated indifferently by group A or group B isolate. Previous studies observed a strong association between the levels of disease severity at the end of the growing season and the initial compositions of E. necator populations in commercial vineyards. The frequencies of E. necator genetic groups vary considerably among vineyards, and the two groups may coexist in the same vineyard. This finding suggests that we need more information on the genetics and epidemiology of E. necator for optimize the crop management In this study we monitored E. necator populations in different vineyards in Emilia – Romagna region (Italy), where the pathogen overwinters both as flagshoots and as cleistothecia. During the grape growing season, symptomatic leaves were sampled early in the growing season and both leaves and berries later during the epidemic growth of the disease. From each sample, single-conidial isolate was obtained. Each isolates was grown on V. vinifera leaf cv. Primitivo and after harvesting the mycelium, the DNA was purified and used as template for PCR amplification with SCAR primers (Sequences Characterised Amplified Region ), -tubulin, IGS sequences and Microsatellite markers (SSR). Amplified DNA from b-tubulin and IGS loci was digested with AciI and XhoI restriction enzymes, respectively, to show single-nucleotide polymorphisms specific for the two genetic groups. The results obtained indicated that SCAR primers are not useful to study the epidemiology. of E. necator conversely the b-tubulin IGS sequences and SSR. Summarize the results obtained with b-tubulin, IGS sequences, in treated vineyards we have found individuals of group B along all grape growing season, whereas in the untreated vineyard individuals of the two genetic groups A and B coexisted throughout the season, with no significant change of their frequency. DNA amplified from ascospores of single cleistothecia showed the presence of markers diagnostic for either groups A and B and were seldom observed also the coexistence of both groups within a claistothecium. These results indicate that individuals of the two groups mated in nature and were able to produced ascospores. With SSR we showed the possibility of recombination between A and B groups in field isolates. During winter, cleistothecia were collected repeatedly in the same vineyards sampling leaves fallen on ground, exfoliating bark from trunks, and from soil. From each substrate, was assess the percentage of cleistothecia containing viable ascospores. Our results confirmed that cleisthotecia contained viable ascospores, therefore they have the potential to be an additional and important source of primary inoculum in Emilia-Romagna vineyards.
Resumo:
In the present study we analyzed new neuroprotective therapeutical strategies in PD (Parkinson’s disease) and AD (Alzheimer’s disease). Current therapeutic strategies for treating PD and AD offer mainly transient symptomatic relief but it is still impossible to block the loss of neuron and then the progression of PD and AD. There is considerable consensus that the increased production and/or aggregation of α- synuclein (α-syn) and β-amyloid peptide (Aβ), plays a central role in the pathogenesis of PD, related synucleinopathies and AD. Therefore, we identified antiamyloidogenic compounds and we tested their effect as neuroprotective drug-like molecules against α-syn and β-amyloid cytotoxicity in PC12. Herein, we show that two nitro-catechol compounds (entacapone and tolcapone) and 5 cathecol-containing compounds (dopamine, pyrogallol, gallic acid, caffeic acid and quercetin) with antioxidant and anti-inflammatory properties, are potent inhibitors of α-syn and β-amyloid oligomerization and fibrillization. Subsequently, we show that the inhibition of α-syn and β-amyloid oligomerization and fibrillization is correlated with the neuroprotection of these compounds against the α-syn and β-amyloid-induced cytotoxicity in PC12. Finally, we focused on the study of the neuroprotective role of microglia and on the possibility that the neuroprotection properties of these cells could be use as therapeutical strategy in PD and AD. Here, we have used an in vitro model to demonstrate neuroprotection of a 48 h-microglial conditioned medium (MCM) towards cerebellar granule neurons (CGNs) challenged with the neurotoxin 6-hydroxydopamine (6-OHDA), which induces a Parkinson-like neurodegeneration, with Aβ42, which induces a Alzheimer-like neurodegeneration, and glutamate, involved in the major neurodegenerative diseases. We show that MCM nearly completely protects CGNs from 6-OHDA neurotoxicity, partially from glutamate excitotoxicity but not from Aβ42 toxin.
Resumo:
Traditional morphological examinations are not anymore sufficient for a complete evaluation of tumoral tissue and the use of neoplastic markers is of utmost importance. Neoplastic markers can be classified in: diagnostic, prognostic and predictive markers. Three markers were analyzed. 1) Insulin-like growth factor binding protein 2 (IGFBP2) was immunohistochemically examined in prostatic tissues: 40 radical prostatectomies from hormonally untreated patients with their preoperative biopsies, 10 radical prostatectomies from patients under complete androgen ablation before surgery and 10 simple prostatectomies from patients with bladder outlet obstruction. Results were compared with α-methylacyl-CoA racemase (AMACR). IGFBP2 was expressed in the cytoplasm of untreated adenocarcinomas and, to a lesser extent, in HG-PIN; the expression was markedly lower in patients after complete androgen ablation. AMACR was similarly expressed in both adenocarcinoma and HG-PIN, the level being similar in both lesions; the expression was slightly lower in patients after complete androgen ablation. IGFBP2 may be used a diagnostic marker of prostatic adenocarcinomas. 2) Heparan surface proteoglycan immunohistochemical expression was examined in 150 oral squamous cell carcinomas. Follow up information was available in 93 patients (range: 6-34 months, mean: 19±7). After surgery, chemotherapy was performed in 8 patients and radiotherapy in 61 patients. Multivariate and univariate overall survival analyses showed that high expression of syndecan-1 (SYN-1) was associated with a poor prognosis. In patients treated with radiotherapy, such association was higher. SYN-1 is a prognostic marker in oral squamous cell carcinomas; it may also represent a predictive factor for responsiveness to radiotherapy. 3) EGFR was studied in 33 pulmonary adenocarcinomas with traditional DNA sequencing methods and with two mutation-specific antibodies. Overall, the two antibodies had 61.1% sensitivity and 100% specificity in detecting EGFR mutations. EGFR mutation-specific antibodies may represent a predictive marker to identify patients candidate to tyrosine kinase inhibitors therapy.
Resumo:
The analysis of apatite fission tracks is applied to the study of the syn- and post-collisional thermochronological evolution of a vast area that includes the Eastern Pontides, their continuation in the Lesser Caucasus of Georgia (Adjara-Trialeti zone) and northern Armenia, and the eastern Anatolian Plateau. The resulting database is then integrated with the data presented by Okay et al. (2010) for the Bitlis Pütürge Massif, i.e. the western portion of the Bitlis-Zagros collision zone between Arabia and Eurasia. The mid-Miocene exhumation episode along the Black Sea coast and Lesser Caucasus of Armenia documented in this dissertation mirrors the age of collision between the Eurasian and Arabian plates along the Bitlis suture zone. We argue that tectonic stresses generated along the Bitlis collision zone were transmitted northward across eastern Anatolia and focused (i) at the rheological boundary between the Anatolian continental lithosphere and the (quasi)oceanic lithosphere of the Black Sea, and (ii) along major pre-existing discontinuities like the Sevan-Akera suture zone.The integration of both present-day crustal dynamics (GPS-derived kinematics and distribution of seismicity) and thermochronological data presented in this paper provides a comparison between short- and long-term deformation patterns for the entire eastern Anatolia-Transcaucasian region. Two successive stages of Neogene deformation of the northern foreland of the Arabia-Eurasia collision zone can be inferred. (i) Early and Middle Miocene: continental deformation was concentrated along the Arabia-Eurasia (Bitlis) collision zone but tectonic stress was also transferred northward across eastern Anatolia, focusing along the eastern Black Sea continent-ocean rheological transition and along major pre-existing structural discontinuities. (ii) Since Late-Middle Miocene time the westward translation of Anatolia and the activation of the North and Eastern Anatolian Fault systems have reduced efficient northward stress transfer.
Resumo:
Catalysis plays a vital role in modern synthetic chemistry. However, even if conventional catalysis (organo-catalysis, metal-catalysis and enzyme-catalysis) has provided outstanding results, various unconventional ways to make chemical reactions more effective appear now very promising. Computational methods can be of great help to reach a deeper comprehension of these chemical processes. The methodologies employed in this thesis are Quantum-Mechanical (QM), Molecular Mechanics (MM) and hybrid Quantum-Mechanical/Molecular Mechanics (QM/MM) methods. In this abstract the results are briefly summarised. The first unconventional catalysis investigated consists in the application of Oriented External Electric Fields (OEEFs) to SN2 and 4e-electrocyclic reactions. SN2 reactions with back-side mechanism can be catalysed or inhibited by the presence of an OEEF. Moreover, OEEFs can inhibit back-side mechanism (Walden inversion of configuration) and promote the naturally unfavoured front-side mechanism (retention of configuration). Electrocyclic ring opening reaction of 3-substituted cyclobutene molecules can occur with inward or outward mechanisms depending on the nature of substituent groups on the cyclobutene structure (torquoselectivity principle). OEEFs can catalyse the naturally favoured pathway or circumvent the torquoselectivity principle leading to different stereoisomers. The second case study is based on Carbon Nanotubes (CNTs) working as nano-reactors: the reaction of ethyl chloride with chloride anion inside CNTs was investigated. In addition to the SN2 mechanism, syn and anti-E2 reactions are possible. These reactions inside CNTs of different radii were examined with hybrid QM/MM methods, finding that these processes can be both catalysed and inhibited by the CNT diameter. The results suggest that electrostatic effects govern the activation energy variations inside CNTs. Finally, a new biochemical approach, based on the use of DNA catalyst was investigated at QM level. Deoxyribozyme 9DB1 catalyses the RNA ligation allowing the regioselective formation of the 3'-5' bond, following an addition-elimination two-step mechanism.
Resumo:
Synucleinopathies are a group of neurodegenerative diseases characterized by tissue deposition of insoluble aggregates of the protein α-synuclein. Currently, the clinical diagnosis of these diseases, including Parkinson’s disease (PD), dementia with Lewy bodies (DLB), and multiple system atrophy (MSA), is very challenging, especially at an early disease stage, due to the heterogeneous and often non-specific clinical manifestations. Therefore, identifying specific biomarkers to aid the diagnosis and improve the clinical management of patients with these disorders represents a primary goal in the field. Pursuing this aim, we applied the α-Syn Real-Time Quaking-Induced Conversion (RT-QuIC), an ultrasensitive technique able to detect minute amounts of amyloidogenic proteins, to a large cohort of 953 CSF samples from clinically well-characterized (“clinical” group), or neuropathologically verified (“NP” group) patients with parkinsonism or dementia. Of significance, we also studied patients with prodromal synucleinopathies (“prodromal” group), such as pure autonomic failure (PAF) (n = 28), isolated REM sleep behavior disorder (iRBD) (n = 18), and mild cognitive impairment due to probable Lewy body (LB) disease (MCI-LB) (n = 81). Our findings show that α-syn RT-QuIC can accurately detect α-Syn seeding activity across the whole spectrum of LB-related disorders (LBD), exhibiting a mean sensitivity of 95.2% in the “clinical” and “NP” group, while ranging between 89.3% (PAF) and 100% (RBD) in the “prodromal group”. Moreover, we observed 95.1% sensitivity and 96.6% specificity in the distinction between MCI-LB patients and cognitively unimpaired controls, demonstrating the solid diagnostic potential of α-Syn RT-QuIC in the early phase of the disease. Finally, 13.3% of MCI-AD patients also had a positive test, suggesting an underlying LB co-pathology. This work demonstrated that α-Syn RT-QuIC is an efficient assay for accurate and early diagnosis of LBD, which should be implemented for clinical management and recruitment for clinical trials in memory clinics.
Resumo:
This research work concerns the application of additive manufacturing (AM) technologies in new electric mobility sectors. The unmatched freedom that AM offers can potentially change the way electric motors are designed and manufactured. The thesis investigates the possibility of creating optimized electric machines that exploit AM technologies, with potential in various industrial sectors, including automotive and aerospace. In particular, we will evaluate how the design of electric motors can be improved by producing the rotor core using Laser Powder Bed Fusion (LPBF) and how the resulting design choices affect component performance. First, the metallurgical and soft magnetic properties of the pure iron and silicon iron alloy parts (Fe-3% wt.Si) produced by LPBF will be defined and discussed, considering the process parameters and the type of heat treatment. This research shows that using LPBF, both pure iron and iron silicon, the parts have mechanical and magnetic properties different from the laminated ones. Hence, FEM-based modeling will be employed to design the rotor core of an SYN RM machine to minimize torque ripple while maintaining structural integrity. Finally, we suggest that further research should extend the field of applicability to other electrical devices.
Resumo:
Real-Time Quaking-Induced Conversion (RT-QuIC) is an ultrasensitive assay capable of detecting pathological aggregates of misfolded proteins in biospecimens. In recent years, efforts have been made to find a more feasible and convenient biomatrix as an alternative to CSF, and skin biopsy may be a suitable candidate. This project aimed to evaluate the diagnostic performance of skin RT-QuIC in 3 different cohorts of patients: 1. Creutzfeldt-Jakob disease (CJD), 2. Lewy body disease (LBD), and 3. Isolated REM sleep behavior disorder (iRBD). We studied 71 punch skin samples of 35 patients with CJD, including five assessed in vitam, using 2 two different substrates: Bank vole 23-230 (Bv23-230) and Syrian hamster 23-231 (Ha23-231) recombinant prion protein. Skin prion RT-QuIC showed a 100% specificity with both substrates and a higher sensitivity with the Bv23-230 than Ha23-231 (87.5% vs. 65.6%, respectively). Forty-one patients underwent both lumbar puncture (LB) and skin biopsy; CSF and skin RT-QuIC showed a high level of concordance (38/41, 92.7%). Then, we analyzed samples taken in vitam (n=69) or postmortem (n=49) from patients with Parkinson’s disease (PD), dementia with Lewy bodies (DLB), incidental Lewy body pathology, and neurological controls. Skin α-syn RT-QuIC distinguished LBD patients with an overall accuracy of 94.1% in the two cohorts (sensitivity, 89.2%; specificity, 96.3%). Seventy-nine patients underwent both CSF and skin α-syn RT-QuIC, and the two assays yielded similar diagnostic accuracy (skin, 97.5%; CSF, 98.7%). Finally, we studied 91 iRBD patients and 41 control. In the skin, RT-QuIC showed a sensitivity of 76.9%, specificity of 97.6%, and 82.0% accuracy. 128 participants (88 patients plus 40 controls) underwent both CSF and skin RT-QuIC. The two protocols showed 99.2% of concordance. These works confirmed that skin punch biopsies might represent a valid and convenient alternative to CSF analysis for an early diagnosis of prion diseases and LB-related pathologies.