2 resultados para element solutions

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The primary objective of this thesis is to obtain a better understanding of the 3D velocity structure of the lithosphere in central Italy. To this end, I adopted the Spectral-Element Method to perform accurate numerical simulations of the complex wavefields generated by the 2009 Mw 6.3 L’Aquila event and by its foreshocks and aftershocks together with some additional events within our target region. For the mainshock, the source was represented by a finite fault and different models for central Italy, both 1D and 3D, were tested. Surface topography, attenuation and Moho discontinuity were also accounted for. Three-component synthetic waveforms were compared to the corresponding recorded data. The results of these analyses show that 3D models, including all the known structural heterogeneities in the region, are essential to accurately reproduce waveform propagation. They allow to capture features of the seismograms, mainly related to topography or to low wavespeed areas, and, combined with a finite fault model, result into a favorable match between data and synthetics for frequencies up to ~0.5 Hz. We also obtained peak ground velocity maps, that provide valuable information for seismic hazard assessment. The remaining differences between data and synthetics led us to take advantage of SEM combined with an adjoint method to iteratively improve the available 3D structure model for central Italy. A total of 63 events and 52 stations in the region were considered. We performed five iterations of the tomographic inversion, by calculating the misfit function gradient - necessary for the model update - from adjoint sensitivity kernels, constructed using only two simulations for each event. Our last updated model features a reduced traveltime misfit function and improved agreement between data and synthetics, although further iterations, as well as refined source solutions, are necessary to obtain a new reference 3D model for central Italy tomography.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis deals with the study of optimal control problems for the incompressible Magnetohydrodynamics (MHD) equations. Particular attention to these problems arises from several applications in science and engineering, such as fission nuclear reactors with liquid metal coolant and aluminum casting in metallurgy. In such applications it is of great interest to achieve the control on the fluid state variables through the action of the magnetic Lorentz force. In this thesis we investigate a class of boundary optimal control problems, in which the flow is controlled through the boundary conditions of the magnetic field. Due to their complexity, these problems present various challenges in the definition of an adequate solution approach, both from a theoretical and from a computational point of view. In this thesis we propose a new boundary control approach, based on lifting functions of the boundary conditions, which yields both theoretical and numerical advantages. With the introduction of lifting functions, boundary control problems can be formulated as extended distributed problems. We consider a systematic mathematical formulation of these problems in terms of the minimization of a cost functional constrained by the MHD equations. The existence of a solution to the flow equations and to the optimal control problem are shown. The Lagrange multiplier technique is used to derive an optimality system from which candidate solutions for the control problem can be obtained. In order to achieve the numerical solution of this system, a finite element approximation is considered for the discretization together with an appropriate gradient-type algorithm. A finite element object-oriented library has been developed to obtain a parallel and multigrid computational implementation of the optimality system based on a multiphysics approach. Numerical results of two- and three-dimensional computations show that a possible minimum for the control problem can be computed in a robust and accurate manner.