4 resultados para electroencephalography
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
The term "Brain Imaging" identi�es a set of techniques to analyze the structure and/or functional behavior of the brain in normal and/or pathological situations. These techniques are largely used in the study of brain activity. In addition to clinical usage, analysis of brain activity is gaining popularity in others recent �fields, i.e. Brain Computer Interfaces (BCI) and the study of cognitive processes. In this context, usage of classical solutions (e.g. f MRI, PET-CT) could be unfeasible, due to their low temporal resolution, high cost and limited portability. For these reasons alternative low cost techniques are object of research, typically based on simple recording hardware and on intensive data elaboration process. Typical examples are ElectroEncephaloGraphy (EEG) and Electrical Impedance Tomography (EIT), where electric potential at the patient's scalp is recorded by high impedance electrodes. In EEG potentials are directly generated from neuronal activity, while in EIT by the injection of small currents at the scalp. To retrieve meaningful insights on brain activity from measurements, EIT and EEG relies on detailed knowledge of the underlying electrical properties of the body. This is obtained from numerical models of the electric �field distribution therein. The inhomogeneous and anisotropic electric properties of human tissues make accurate modeling and simulation very challenging, leading to a tradeo�ff between physical accuracy and technical feasibility, which currently severely limits the capabilities of these techniques. Moreover elaboration of data recorded requires usage of regularization techniques computationally intensive, which influences the application with heavy temporal constraints (such as BCI). This work focuses on the parallel implementation of a work-flow for EEG and EIT data processing. The resulting software is accelerated using multi-core GPUs, in order to provide solution in reasonable times and address requirements of real-time BCI systems, without over-simplifying the complexity and accuracy of the head models.
Resumo:
Background: Brain cooling (BC) represents the elective treatment in asphyxiated newborns. Amplitude Integrated Electroencephalography (aEEG) and Near Infrared Spectroscopy (NIRS) monitoring may help to evaluate changes in cerebral electrical activity and cerebral hemodynamics during hypothermia. Objectives: To evaluate the prognostic value of aEEG time course and NIRS data in asphyxiated cooled infants. Methods: 12 term neonates admitted to our NICU with moderate-severe Hypoxic-Ischemic Encephalopathy (HIE) underwent selective BC. aEEG and NIRS monitoring were started as soon as possible and maintained during the whole hypothermic treatment. Follow-up was scheduled at regular intervals; adverse outcome was defined as death, cerebral palsy (CP) or global quotient < 88.7 at Griffiths’ Scale. Results: 2/12 infants died, 2 developed CP, 1 was normal at 6 months of age and then lost at follow-up and 7 showed a normal outcome at least at 1 year of age. The aEEG background pattern at 24 hours of life was abnormal in 10 newborns; only 4 of them developed an adverse outcome, whereas the 2 infants with a normal aEEG developed normally. In infants with adverse outcome NIRS showed a higher Tissue Oxygenation Index (TOI) than those with normal outcome (80.0±10.5% vs 66.9±7.0%, p=0.057; 79.7±9.4% vs 67.1±7.9%, p=0.034; 80.2±8.8% vs 71.6±5.9%, p=0.069 at 6, 12 and 24 hours of life, respectively). Conclusions: The aEEG background pattern at 24 hours of life loses its positive predictive value after BC implementation; TOI could be useful to predict early on infants that may benefit from other innovative therapies.
Resumo:
The work of the present thesis is focused on the implementation of microelectronic voltage sensing devices, with the purpose of transmitting and extracting analog information between devices of different nature at short distances or upon contact. Initally, chip-to-chip communication has been studied, and circuitry for 3D capacitive coupling has been implemented. Such circuits allow the communication between dies fabricated in different technologies. Due to their novelty, they are not standardized and currently not supported by standard CAD tools. In order to overcome such burden, a novel approach for the characterization of such communicating links has been proposed. This results in shorter design times and increased accuracy. Communication between an integrated circuit (IC) and a probe card has been extensively studied as well. Today wafer probing is a costly test procedure with many drawbacks, which could be overcome by a different communication approach such as capacitive coupling. For this reason wireless wafer probing has been investigated as an alternative approach to standard on-contact wafer probing. Interfaces between integrated circuits and biological systems have also been investigated. Active electrodes for simultaneous electroencephalography (EEG) and electrical impedance tomography (EIT) have been implemented for the first time in a 0.35 um process. Number of wires has been minimized by sharing the analog outputs and supply on a single wire, thus implementing electrodes that require only 4 wires for their operation. Minimization of wires reduces the cable weight and thus limits the patient's discomfort. The physical channel for communication between an IC and a biological medium is represented by the electrode itself. As this is a very crucial point for biopotential acquisitions, large efforts have been carried in order to investigate the different electrode technologies and geometries and an electromagnetic model is presented in order to characterize the properties of the electrode to skin interface.
Resumo:
The research activity focused on the study, design and evaluation of innovative human-machine interfaces based on virtual three-dimensional environments. It is based on the brain electrical activities recorded in real time through the electrical impulses emitted by the brain waves of the user. The achieved target is to identify and sort in real time the different brain states and adapt the interface and/or stimuli to the corresponding emotional state of the user. The setup of an experimental facility based on an innovative experimental methodology for “man in the loop" simulation was established. It allowed involving during pilot training in virtually simulated flights, both pilot and flight examiner, in order to compare the subjective evaluations of this latter to the objective measurements of the brain activity of the pilot. This was done recording all the relevant information versus a time-line. Different combinations of emotional intensities obtained, led to an evaluation of the current situational awareness of the user. These results have a great implication in the current training methodology of the pilots, and its use could be extended as a tool that can improve the evaluation of a pilot/crew performance in interacting with the aircraft when performing tasks and procedures, especially in critical situations. This research also resulted in the design of an interface that adapts the control of the machine to the situation awareness of the user. The new concept worked on, aimed at improving the efficiency between a user and the interface, and gaining capacity by reducing the user’s workload and hence improving the system overall safety. This innovative research combining emotions measured through electroencephalography resulted in a human-machine interface that would have three aeronautical related applications: • An evaluation tool during the pilot training; • An input for cockpit environment; • An adaptation tool of the cockpit automation.