3 resultados para elastic modulus

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The knee joint is a key structure of the human locomotor system. The knowledge of how each single anatomical structure of the knee contributes to determine the physiological function of the knee, is of fundamental importance for the development of new prostheses and novel clinical, surgical, and rehabilitative procedures. In this context, a modelling approach is necessary to estimate the biomechanic function of each anatomical structure during daily living activities. The main aim of this study was to obtain a subject-specific model of the knee joint of a selected healthy subject. In particular, 3D models of the cruciate ligaments and of the tibio-femoral articular contact were proposed and developed using accurate bony geometries and kinematics reliably recorded by means of nuclear magnetic resonance and 3D video-fluoroscopy from the selected subject. Regarding the model of the cruciate ligaments, each ligament was modelled with 25 linear-elastic elements paying particular attention to the anatomical twisting of the fibres. The devised model was as subject-specific as possible. The geometrical parameters were directly estimated from the experimental measurements, whereas the only mechanical parameter of the model, the elastic modulus, had to be considered from the literature because of the invasiveness of the needed measurements. Thus, the developed model was employed for simulations of stability tests and during living activities. Physiologically meaningful results were always obtained. Nevertheless, the lack of subject-specific mechanical characterization induced to design and partially develop a novel experimental method to characterize the mechanics of the human cruciate ligaments in living healthy subjects. Moreover, using the same subject-specific data, the tibio-femoral articular interaction was modelled investigating the location of the contact point during the execution of daily motor tasks and the contact area at the full extension with and without the whole body weight of the subject. Two different approaches were implemented and their efficiency was evaluated. Thus, pros and cons of each approach were discussed in order to suggest future improvements of this methodologies. The final results of this study will contribute to produce useful methodologies for the investigation of the in-vivo function and pathology of the knee joint during the execution of daily living activities. Thus, the developed methodologies will be useful tools for the development of new prostheses, tools and procedures both in research field and in diagnostic, surgical and rehabilitative fields.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The main reasons for the attention focused on ceramics as possible structural materials are their wear resistance and the ability to operate with limited oxidation and ablation at temperatures above 2000°C. Hence, this work is devoted to the study of two classes of materials which can satisfy these requirements: silicon carbide -based ceramics (SiC) for wear applications and borides and carbides of transition metals for ultra-high temperatures applications (UHTCs). SiC-based materials: Silicon carbide is a hard ceramic, which finds applications in many industrial sectors, from heat production, to automotive engineering and metals processing. In view of new fields of uses, SiC-based ceramics were produced with addition of 10-30 vol% of MoSi2, in order to obtain electro conductive ceramics. MoSi2, indeed, is an intermetallic compound which possesses high temperature oxidation resistance, high electrical conductivity (21·10-6 Ω·cm), relatively low density (6.31 g/cm3), high melting point (2030°C) and high stiffness (440 GPa). The SiC-based ceramics were hot pressed at 1900°C with addition of Al2O3-Y2O3 or Y2O3-AlN as sintering additives. The microstructure of the composites and of the reference materials, SiC and MoSi2, were studied by means of conventional analytical techniques, such as X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive spectroscopy (SEM-EDS). The composites showed a homogeneous microstructure, with good dispersion of the secondary phases and low residual porosity. The following thermo-mechanical properties of the SiC-based materials were measured: Vickers hardness (HV), Young’s modulus (E), fracture toughness (KIc) and room to high temperature flexural strength (σ). The mechanical properties of the composites were compared to those of two monolithic SiC and MoSi2 materials and resulted in a higher stiffness, fracture toughness and slightly higher flexural resistance. Tribological tests were also performed in two configurations disco-on-pin and slideron cylinder, aiming at studying the wear behaviour of SiC-MoSi2 composites with Al2O3 as counterfacing materials. The tests pointed out that the addition of MoSi2 was detrimental owing to a lower hardness in comparison with the pure SiC matrix. On the contrary, electrical measurements revealed that the addition of 30 vol% of MoSi2, rendered the composite electroconductive, lowering the electrical resistance of three orders of magnitude. Ultra High Temperature Ceramics: Carbides, borides and nitrides of transition metals (Ti, Zr, Hf, Ta, Nb, Mo) possess very high melting points and interesting engineering properties, such as high hardness (20-25 GPa), high stiffness (400-500 GPa), flexural strengths which remain unaltered from room temperature to 1500°C and excellent corrosion resistance in aggressive environment. All these properties place the UHTCs as potential candidates for the development of manoeuvrable hypersonic flight vehicles with sharp leading edges. To this scope Zr- and Hf- carbide and boride materials were produced with addition of 5-20 vol% of MoSi2. This secondary phase enabled the achievement of full dense composites at temperature lower than 2000°C and without the application of pressure. Besides the conventional microstructure analyses XRD and SEM-EDS, transmission electron microscopy (TEM) was employed to explore the microstructure on a small length scale to disclose the effective densification mechanisms. A thorough literature analysis revealed that neither detailed TEM work nor reports on densification mechanisms are available for this class of materials, which however are essential to optimize the sintering aids utilized and the processing parameters applied. Microstructural analyses, along with thermodynamics and crystallographic considerations, led to disclose of the effective role of MoSi2 during sintering of Zrand Hf- carbides and borides. Among the investigated mechanical properties (HV, E, KIc, σ from room temperature to 1500°C), the high temperature flexural strength was improved due to the protective and sealing effect of a silica-based glassy phase, especially for the borides. Nanoindentation tests were also performed on HfC-MoSi2 composites in order to extract hardness and elastic modulus of the single phases. Finally, arc jet tests on HfC- and HfB2-based composites confirmed the excellent oxidation behaviour of these materials under temperature exceeding 2000°C; no cracking or spallation occurred and the modified layer was only 80-90 μm thick.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The research work was aimed at studying, with a deterministic approach, the relationships between the rock’s texture and its mechanical properties determined at the laboratory scale. The experimentation was performed on a monomineralic crystalline rock, varying in texture, i.e. grains shape. Multi-scale analysis has been adopted to determine the elasto-mechanical properties of the crystals composing the rock and its strength and deformability at the macro-scale. This let us to understand how the structural variability of the investigated rock affects its macromechanical behaviour. Investigations have been performed on three different scales: nano-scale (order of nm), micro-scale (tens of m) and macro-scale (cm). Innovative techniques for rock mechanics, i.e. Depth Sensing Indentation (DSI), have been applied, in order to determine the elasto-mechanical properties of the calcite grains. These techniques have also allowed to study the influence of grain boundaries on the mechanical response of calcite grains by varying the indents’ sizes and to quantify the effect of the applied load on the hardness and elastic modulus of the grain (indentation size effect, ISE). The secondary effects of static indentation Berkovich, Vickers and Knoop were analyzed by SEM, and some considerations on the rock’s brittle behaviour and the effect of microcracks can be made.