15 resultados para dynamic stochastic general equilibrium models
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
Small-scale dynamic stochastic general equilibrium have been treated as the benchmark of much of the monetary policy literature, given their ability to explain the impact of monetary policy on output, inflation and financial markets. One cause of the empirical failure of New Keynesian models is partially due to the Rational Expectations (RE) paradigm, which entails a tight structure on the dynamics of the system. Under this hypothesis, the agents are assumed to know the data genereting process. In this paper, we propose the econometric analysis of New Keynesian DSGE models under an alternative expectations generating paradigm, which can be regarded as an intermediate position between rational expectations and learning, nameley an adapted version of the "Quasi-Rational" Expectatations (QRE) hypothesis. Given the agents' statistical model, we build a pseudo-structural form from the baseline system of Euler equations, imposing that the length of the reduced form is the same as in the `best' statistical model.
Resumo:
The dissertation consists of four papers that aim at providing new contributions in the field of macroeconomics, monetary policy and financial stability. The first paper proposes a new Dynamic Stochastic General Equilibrium (DSGE) model with credit frictions and a banking sector to study the pro-cyclicality of credit and the role of different prudential regulatory frameworks in affecting business cycle fluctuations and in restoring macroeconomic and financial stability. The second paper develops a simple DSGE model capable of evaluating the effects of large purchases of treasuries by central banks. This theoretical framework is employed to evaluate the impact on yields and the macroeconomy of large purchases of medium- and long-term government bonds recently implemented in the US and UK. The third paper studies the effects of ECB communications about unconventional monetary policy operations on the perceived sovereign risk of Italy over the last five years. The empirical results are derived from both an event-study analysis and a GARCH model, which uses Italian long-term bond futures to disentangle expected from unexpected policy actions. The fourth paper proposes a DSGE model with an endogenous term structure of interest rates, which is able to replicate the stylized facts regarding the yield curve and the term premium in the US over the period 1987:3-2011:3, without compromising its ability to match macro dynamics.
Resumo:
In the last two decades, authors have begun to expand classical stochastic frontier (SF) models in order to include also some spatial components. Indeed, firms tend to concentrate in clusters, taking advantage of positive agglomeration externalities due to cooperation, shared ideas and emulation, resulting in increased productivity levels. Until now scholars have introduced spatial dependence into SF models following two different paths: evaluating global and local spatial spillover effects related to the frontier or considering spatial cross-sectional correlation in the inefficiency and/or in the error term. In this thesis, we extend the current literature on spatial SF models introducing two novel specifications for panel data. First, besides considering productivity and input spillovers, we introduce the possibility to evaluate the specific spatial effects arising from each inefficiency determinant through their spatial lags aiming to capture also knowledge spillovers. Second, we develop a very comprehensive spatial SF model that includes both frontier and error-based spillovers in order to consider four different sources of spatial dependence (i.e. productivity and input spillovers related to the frontier function and behavioural and environmental correlation associated with the two error terms). Finally, we test the finite sample properties of the two proposed spatial SF models through simulations, and we provide two empirical applications to the Italian accommodation and agricultural sectors. From a practical perspective, policymakers, based on results from these models, can rely on precise, detailed and distinct insights on the spillover effects affecting the productive performance of neighbouring spatial units obtaining interesting and relevant suggestions for policy decisions.
Resumo:
The accurate representation of the Earth Radiation Budget by General Circulation Models (GCMs) is a fundamental requirement to provide reliable historical and future climate simulations. In this study, we found reasonable agreement between the integrated energy fluxes at the top of the atmosphere simulated by 34 state-of-the-art climate models and the observations provided by the Cloud and Earth Radiant Energy System (CERES) mission on a global scale, but large regional biases have been detected throughout the globe. Furthermore, we highlighted that a good agreement between simulated and observed integrated Outgoing Longwave Radiation (OLR) fluxes may be obtained from the cancellation of opposite-in-sign systematic errors, localized in different spectral ranges. To avoid this and to understand the causes of these biases, we compared the observed Earth emission spectra, measured by the Infrared Atmospheric Sounding Interferometer (IASI) in the period 2008-2016, with the synthetic radiances computed on the basis of the atmospheric fields provided by the EC-Earth GCM. To this purpose, the fast σ-IASI radiative transfer model was used, after its validation and implementation in EC-Earth. From the comparison between observed and simulated spectral radiances, a positive temperature bias in the stratosphere and a negative temperature bias in the middle troposphere, as well as a dry bias of the water vapor concentration in the upper troposphere, have been identified in the EC-Earth climate model. The analysis has been performed in clear-sky conditions, but the feasibility of its extension in the presence of clouds, whose impact on the radiation represents the greatest source of uncertainty in climate models, has also been proven. Finally, the analysis of simulated and observed OLR trends indicated good agreement and provided detailed information on the spectral fingerprints of the evolution of the main climate variables.
Resumo:
The last decades have seen a large effort of the scientific community to study and understand the physics of sea ice. We currently have a wide - even though still not exhaustive - knowledge of the sea ice dynamics and thermodynamics and of their temporal and spatial variability. Sea ice biogeochemistry is instead largely unknown. Sea ice algae production may account for up to 25% of overall primary production in ice-covered waters of the Southern Ocean. However, the influence of physical factors, such as the location of ice formation, the role of snow cover and light availability on sea ice primary production is poorly understood. There are only sparse localized observations and little knowledge of the functioning of sea ice biogeochemistry at larger scales. Modelling becomes then an auxiliary tool to help qualifying and quantifying the role of sea ice biogeochemistry in the ocean dynamics. In this thesis, a novel approach is used for the modelling and coupling of sea ice biogeochemistry - and in particular its primary production - to sea ice physics. Previous attempts were based on the coupling of rather complex sea ice physical models to empirical or relatively simple biological or biogeochemical models. The focus is moved here to a more biologically-oriented point of view. A simple, however comprehensive, physical model of the sea ice thermodynamics (ESIM) was developed and coupled to a novel sea ice implementation (BFM-SI) of the Biogeochemical Flux Model (BFM). The BFM is a comprehensive model, largely used and validated in the open ocean environment and in regional seas. The physical model has been developed having in mind the biogeochemical properties of sea ice and the physical inputs required to model sea ice biogeochemistry. The central concept of the coupling is the modelling of the Biologically-Active-Layer (BAL), which is the time-varying fraction of sea ice that is continuously connected to the ocean via brines pockets and channels and it acts as rich habitat for many microorganisms. The physical model provides the key physical properties of the BAL (e.g., brines volume, temperature and salinity), and the BFM-SI simulates the physiological and ecological response of the biological community to the physical enviroment. The new biogeochemical model is also coupled to the pelagic BFM through the exchange of organic and inorganic matter at the boundaries between the two systems . This is done by computing the entrapment of matter and gases when sea ice grows and release to the ocean when sea ice melts to ensure mass conservation. The model was tested in different ice-covered regions of the world ocean to test the generality of the parameterizations. The focus was particularly on the regions of landfast ice, where primary production is generally large. The implementation of the BFM in sea ice and the coupling structure in General Circulation Models will add a new component to the latters (and in general to Earth System Models), which will be able to provide adequate estimate of the role and importance of sea ice biogeochemistry in the global carbon cycle.
Resumo:
The present work, then, is concerned with the forgotten elements of the Lebanese economy, agriculture and rural development. It investigates the main problematic which arose from these forgotten components, in particular the structure of the agricultural sector, production technology, income distribution, poverty, food security, territorial development and local livelihood strategies. It will do so using quantitative Computable General Equilibrium (CGE) modeling and a qualitative phenomenological case study analysis, both embedded in a critical review of the historical development of the political economy of Lebanon, and a structural analysis of its economy. The research shows that under-development in Lebanese rural areas is not due to lack of resources, but rather is the consequence of political choices. It further suggests that agriculture – in both its mainstream conventional and its innovative locally initiated forms of production – still represents important potential for inducing economic growth and development. In order to do so, Lebanon has to take full advantage of its human and territorial capital, by developing a rural development strategy based on two parallel sets of actions: one directed toward the support of local rural development initiatives, and the other directed toward intensive form of production. In addition to its economic returns, such a strategy would promote social and political stability.
Resumo:
The way mass is distributed in galaxies plays a major role in shaping their evolution across cosmic time. The galaxy's total mass is usually determined by tracing the motion of stars in its potential, which can be probed observationally by measuring stellar spectra at different distances from the galactic centre, whose kinematics is used to constrain dynamical models. A class of such models, commonly used to accurately determine the distribution of luminous and dark matter in galaxies, is that of equilibrium models. In this Thesis, a novel approach to the design of equilibrium dynamical models, in which the distribution function is an analytic function of the action integrals, is presented. Axisymmetric and rotating models are used to explain observations of a sample of nearby early-type galaxies in the Calar Alto Legacy Integral Field Area survey. Photometric and spectroscopic data for round and flattened galaxies are well fitted by the models, which are then used to get the galaxies' total mass distribution and orbital anisotropy. The time evolution of massive early-type galaxies is also investigated with numerical models. Their structural properties (mass, size, velocity dispersion) are observed to evolve, on average, with redshift. In particular, they appear to be significantly more compact at higher redshift, at fixed stellar mass, so it is interesting to investigate what drives such evolution. This Thesis focuses on the role played by dark-matter haloes: their mass-size and mass-velocity dispersion correlations evolve similarly to the analogous correlations of ellipticals; at fixed halo mass, the haloes are more compact at higher redshift, similarly to massive galaxies; a simple model, in which all the galaxy's size and velocity-dispersion evolution is due to the cosmological evolution of the underlying halo population, reproduces the observed size and velocity-dispersion of massive compact early-type galaxies up to redshift of about 2.
Resumo:
Understanding the natural and forced variability of the atmospheric general circulation and its drivers is one of the grand challenges in climate science. It is of paramount importance to understand to what extent the systematic error of climate models affects the processes driving such variability. This is done by performing a set of simulations (ROCK experiments) with an intermediate complexity atmospheric model (SPEEDY), in which the Rocky Mountains orography is increased or decreased to influence the structure of the North Pacific jet stream. For each of these modified-orography experiments, the climatic response to idealized sea surface temperature anomalies of varying intensity in the El Niño Southern Oscillation (ENSO) region is studied. ROCK experiments are characterized by variations in the Pacific jet stream intensity whose extension encompasses the spread of the systematic error found in Coupled Model Intercomparison Project (CMIP6) models. When forced with ENSO-like idealised anomalies, they exhibit a non-negligible sensitivity in the response pattern over the Pacific North American region, indicating that the model mean state can affect the model response to ENSO. It is found that the classical Rossby wave train response to ENSO is more meridionally oriented when the Pacific jet stream is weaker and more zonally oriented with a stronger jet. Rossby wave linear theory suggests that a stronger jet implies a stronger waveguide, which traps Rossby waves at a lower latitude, favouring a zonal propagation of Rossby waves. The shape of the dynamical response to ENSO affects the ENSO impacts on surface temperature and precipitation over Central and North America. A comparison of the SPEEDY results with CMIP6 models suggests a wider applicability of the results to more resources-demanding climate general circulation models (GCMs), opening up to future works focusing on the relationship between Pacific jet misrepresentation and response to external forcing in fully-fledged GCMs.
Resumo:
During the last few years, a great deal of interest has risen concerning the applications of stochastic methods to several biochemical and biological phenomena. Phenomena like gene expression, cellular memory, bet-hedging strategy in bacterial growth and many others, cannot be described by continuous stochastic models due to their intrinsic discreteness and randomness. In this thesis I have used the Chemical Master Equation (CME) technique to modelize some feedback cycles and analyzing their properties, including experimental data. In the first part of this work, the effect of stochastic stability is discussed on a toy model of the genetic switch that triggers the cellular division, which malfunctioning is known to be one of the hallmarks of cancer. The second system I have worked on is the so-called futile cycle, a closed cycle of two enzymatic reactions that adds and removes a chemical compound, called phosphate group, to a specific substrate. I have thus investigated how adding noise to the enzyme (that is usually in the order of few hundred molecules) modifies the probability of observing a specific number of phosphorylated substrate molecules, and confirmed theoretical predictions with numerical simulations. In the third part the results of the study of a chain of multiple phosphorylation-dephosphorylation cycles will be presented. We will discuss an approximation method for the exact solution in the bidimensional case and the relationship that this method has with the thermodynamic properties of the system, which is an open system far from equilibrium.In the last section the agreement between the theoretical prediction of the total protein quantity in a mouse cells population and the observed quantity will be shown, measured via fluorescence microscopy.
Resumo:
The increasing diffusion of wireless-enabled portable devices is pushing toward the design of novel service scenarios, promoting temporary and opportunistic interactions in infrastructure-less environments. Mobile Ad Hoc Networks (MANET) are the general model of these higly dynamic networks that can be specialized, depending on application cases, in more specific and refined models such as Vehicular Ad Hoc Networks and Wireless Sensor Networks. Two interesting deployment cases are of increasing relevance: resource diffusion among users equipped with portable devices, such as laptops, smart phones or PDAs in crowded areas (termed dense MANET) and dissemination/indexing of monitoring information collected in Vehicular Sensor Networks. The extreme dynamicity of these scenarios calls for novel distributed protocols and services facilitating application development. To this aim we have designed middleware solutions supporting these challenging tasks. REDMAN manages, retrieves, and disseminates replicas of software resources in dense MANET; it implements novel lightweight protocols to maintain a desired replication degree despite participants mobility, and efficiently perform resource retrieval. REDMAN exploits the high-density assumption to achieve scalability and limited network overhead. Sensed data gathering and distributed indexing in Vehicular Networks raise similar issues: we propose a specific middleware support, called MobEyes, exploiting node mobility to opportunistically diffuse data summaries among neighbor vehicles. MobEyes creates a low-cost opportunistic distributed index to query the distributed storage and to determine the location of needed information. Extensive validation and testing of REDMAN and MobEyes prove the effectiveness of our original solutions in limiting communication overhead while maintaining the required accuracy of replication degree and indexing completeness, and demonstrates the feasibility of the middleware approach.
Resumo:
This work provides a forward step in the study and comprehension of the relationships between stochastic processes and a certain class of integral-partial differential equation, which can be used in order to model anomalous diffusion and transport in statistical physics. In the first part, we brought the reader through the fundamental notions of probability and stochastic processes, stochastic integration and stochastic differential equations as well. In particular, within the study of H-sssi processes, we focused on fractional Brownian motion (fBm) and its discrete-time increment process, the fractional Gaussian noise (fGn), which provide examples of non-Markovian Gaussian processes. The fGn, together with stationary FARIMA processes, is widely used in the modeling and estimation of long-memory, or long-range dependence (LRD). Time series manifesting long-range dependence, are often observed in nature especially in physics, meteorology, climatology, but also in hydrology, geophysics, economy and many others. We deepely studied LRD, giving many real data examples, providing statistical analysis and introducing parametric methods of estimation. Then, we introduced the theory of fractional integrals and derivatives, which indeed turns out to be very appropriate for studying and modeling systems with long-memory properties. After having introduced the basics concepts, we provided many examples and applications. For instance, we investigated the relaxation equation with distributed order time-fractional derivatives, which describes models characterized by a strong memory component and can be used to model relaxation in complex systems, which deviates from the classical exponential Debye pattern. Then, we focused in the study of generalizations of the standard diffusion equation, by passing through the preliminary study of the fractional forward drift equation. Such generalizations have been obtained by using fractional integrals and derivatives of distributed orders. In order to find a connection between the anomalous diffusion described by these equations and the long-range dependence, we introduced and studied the generalized grey Brownian motion (ggBm), which is actually a parametric class of H-sssi processes, which have indeed marginal probability density function evolving in time according to a partial integro-differential equation of fractional type. The ggBm is of course Non-Markovian. All around the work, we have remarked many times that, starting from a master equation of a probability density function f(x,t), it is always possible to define an equivalence class of stochastic processes with the same marginal density function f(x,t). All these processes provide suitable stochastic models for the starting equation. Studying the ggBm, we just focused on a subclass made up of processes with stationary increments. The ggBm has been defined canonically in the so called grey noise space. However, we have been able to provide a characterization notwithstanding the underline probability space. We also pointed out that that the generalized grey Brownian motion is a direct generalization of a Gaussian process and in particular it generalizes Brownain motion and fractional Brownain motion as well. Finally, we introduced and analyzed a more general class of diffusion type equations related to certain non-Markovian stochastic processes. We started from the forward drift equation, which have been made non-local in time by the introduction of a suitable chosen memory kernel K(t). The resulting non-Markovian equation has been interpreted in a natural way as the evolution equation of the marginal density function of a random time process l(t). We then consider the subordinated process Y(t)=X(l(t)) where X(t) is a Markovian diffusion. The corresponding time-evolution of the marginal density function of Y(t) is governed by a non-Markovian Fokker-Planck equation which involves the same memory kernel K(t). We developed several applications and derived the exact solutions. Moreover, we considered different stochastic models for the given equations, providing path simulations.
Resumo:
This dissertation concerns active fibre-reinforced composites with embedded shape memory alloy wires. The structural application of active materials allows to develop adaptive structures which actively respond to changes in the environment, such as morphing structures, self-healing structures and power harvesting devices. In particular, shape memory alloy actuators integrated within a composite actively control the structural shape or stiffness, thus influencing the composite static and dynamic properties. Envisaged applications include, among others, the prevention of thermal buckling of the outer skin of air vehicles, shape changes in panels for improved aerodynamic characteristics and the deployment of large space structures. The study and design of active composites is a complex and multidisciplinary topic, requiring in-depth understanding of both the coupled behaviour of active materials and the interaction between the different composite constituents. Both fibre-reinforced composites and shape memory alloys are extremely active research topics, whose modelling and experimental characterisation still present a number of open problems. Thus, while this dissertation focuses on active composites, some of the research results presented here can be usefully applied to traditional fibre-reinforced composites or other shape memory alloy applications. The dissertation is composed of four chapters. In the first chapter, active fibre-reinforced composites are introduced by giving an overview of the most common choices available for the reinforcement, matrix and production process, together with a brief introduction and classification of active materials. The second chapter presents a number of original contributions regarding the modelling of fibre-reinforced composites. Different two-dimensional laminate theories are derived from a parent three-dimensional theory, introducing a procedure for the a posteriori reconstruction of transverse stresses along the laminate thickness. Accurate through the thickness stresses are crucial for the composite modelling as they are responsible for some common failure mechanisms. A new finite element based on the First-order Shear Deformation Theory and a hybrid stress approach is proposed for the numerical solution of the two-dimensional laminate problem. The element is simple and computationally efficient. The transverse stresses through the laminate thickness are reconstructed starting from a general finite element solution. A two stages procedure is devised, based on Recovery by Compatibility in Patches and three-dimensional equilibrium. Finally, the determination of the elastic parameters of laminated structures via numerical-experimental Bayesian techniques is investigated. Two different estimators are analysed and compared, leading to the definition of an alternative procedure to improve convergence of the estimation process. The third chapter focuses on shape memory alloys, describing their properties and applications. A number of constitutive models proposed in the literature, both one-dimensional and three-dimensional, are critically discussed and compared, underlining their potential and limitations, which are mainly related to the definition of the phase diagram and the choice of internal variables. Some new experimental results on shape memory alloy material characterisation are also presented. These experimental observations display some features of the shape memory alloy behaviour which are generally not included in the current models, thus some ideas are proposed for the development of a new constitutive model. The fourth chapter, finally, focuses on active composite plates with embedded shape memory alloy wires. A number of di®erent approaches can be used to predict the behaviour of such structures, each model presenting different advantages and drawbacks related to complexity and versatility. A simple model able to describe both shape and stiffness control configurations within the same context is proposed and implemented. The model is then validated considering the shape control configuration, which is the most sensitive to model parameters. The experimental work is divided in two parts. In the first part, an active composite is built by gluing prestrained shape memory alloy wires on a carbon fibre laminate strip. This structure is relatively simple to build, however it is useful in order to experimentally demonstrate the feasibility of the concept proposed in the first part of the chapter. In the second part, the making of a fibre-reinforced composite with embedded shape memory alloy wires is investigated, considering different possible choices of materials and manufacturing processes. Although a number of technological issues still need to be faced, the experimental results allow to demonstrate the mechanism of shape control via embedded shape memory alloy wires, while showing a good agreement with the proposed model predictions.
Resumo:
The presented study carried out an analysis on rural landscape changes. In particular the study focuses on the understanding of driving forces acting on the rural built environment using a statistical spatial model implemented through GIS techniques. It is well known that the study of landscape changes is essential for a conscious decision making in land planning. From a bibliography review results a general lack of studies dealing with the modeling of rural built environment and hence a theoretical modelling approach for such purpose is needed. The advancement in technology and modernity in building construction and agriculture have gradually changed the rural built environment. In addition, the phenomenon of urbanization of a determined the construction of new volumes that occurred beside abandoned or derelict rural buildings. Consequently there are two types of transformation dynamics affecting mainly the rural built environment that can be observed: the conversion of rural buildings and the increasing of building numbers. It is the specific aim of the presented study to propose a methodology for the development of a spatial model that allows the identification of driving forces that acted on the behaviours of the building allocation. In fact one of the most concerning dynamic nowadays is related to an irrational expansion of buildings sprawl across landscape. The proposed methodology is composed by some conceptual steps that cover different aspects related to the development of a spatial model: the selection of a response variable that better describe the phenomenon under study, the identification of possible driving forces, the sampling methodology concerning the collection of data, the most suitable algorithm to be adopted in relation to statistical theory and method used, the calibration process and evaluation of the model. A different combination of factors in various parts of the territory generated favourable or less favourable conditions for the building allocation and the existence of buildings represents the evidence of such optimum. Conversely the absence of buildings expresses a combination of agents which is not suitable for building allocation. Presence or absence of buildings can be adopted as indicators of such driving conditions, since they represent the expression of the action of driving forces in the land suitability sorting process. The existence of correlation between site selection and hypothetical driving forces, evaluated by means of modeling techniques, provides an evidence of which driving forces are involved in the allocation dynamic and an insight on their level of influence into the process. GIS software by means of spatial analysis tools allows to associate the concept of presence and absence with point futures generating a point process. Presence or absence of buildings at some site locations represent the expression of these driving factors interaction. In case of presences, points represent locations of real existing buildings, conversely absences represent locations were buildings are not existent and so they are generated by a stochastic mechanism. Possible driving forces are selected and the existence of a causal relationship with building allocations is assessed through a spatial model. The adoption of empirical statistical models provides a mechanism for the explanatory variable analysis and for the identification of key driving variables behind the site selection process for new building allocation. The model developed by following the methodology is applied to a case study to test the validity of the methodology. In particular the study area for the testing of the methodology is represented by the New District of Imola characterized by a prevailing agricultural production vocation and were transformation dynamic intensively occurred. The development of the model involved the identification of predictive variables (related to geomorphologic, socio-economic, structural and infrastructural systems of landscape) capable of representing the driving forces responsible for landscape changes.. The calibration of the model is carried out referring to spatial data regarding the periurban and rural area of the study area within the 1975-2005 time period by means of Generalised linear model. The resulting output from the model fit is continuous grid surface where cells assume values ranged from 0 to 1 of probability of building occurrences along the rural and periurban area of the study area. Hence the response variable assesses the changes in the rural built environment occurred in such time interval and is correlated to the selected explanatory variables by means of a generalized linear model using logistic regression. Comparing the probability map obtained from the model to the actual rural building distribution in 2005, the interpretation capability of the model can be evaluated. The proposed model can be also applied to the interpretation of trends which occurred in other study areas, and also referring to different time intervals, depending on the availability of data. The use of suitable data in terms of time, information, and spatial resolution and the costs related to data acquisition, pre-processing, and survey are among the most critical aspects of model implementation. Future in-depth studies can focus on using the proposed model to predict short/medium-range future scenarios for the rural built environment distribution in the study area. In order to predict future scenarios it is necessary to assume that the driving forces do not change and that their levels of influence within the model are not far from those assessed for the time interval used for the calibration.
Resumo:
The aim of the thesis is to propose a Bayesian estimation through Markov chain Monte Carlo of multidimensional item response theory models for graded responses with complex structures and correlated traits. In particular, this work focuses on the multiunidimensional and the additive underlying latent structures, considering that the first one is widely used and represents a classical approach in multidimensional item response analysis, while the second one is able to reflect the complexity of real interactions between items and respondents. A simulation study is conducted to evaluate the parameter recovery for the proposed models under different conditions (sample size, test and subtest length, number of response categories, and correlation structure). The results show that the parameter recovery is particularly sensitive to the sample size, due to the model complexity and the high number of parameters to be estimated. For a sufficiently large sample size the parameters of the multiunidimensional and additive graded response models are well reproduced. The results are also affected by the trade-off between the number of items constituting the test and the number of item categories. An application of the proposed models on response data collected to investigate Romagna and San Marino residents' perceptions and attitudes towards the tourism industry is also presented.