11 resultados para dynamic performance appraisal
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
The ever-increasing spread of automation in industry puts the electrical engineer in a central role as a promoter of technological development in a sector such as the use of electricity, which is the basis of all the machinery and productive processes. Moreover the spread of drives for motor control and static converters with structures ever more complex, places the electrical engineer to face new challenges whose solution has as critical elements in the implementation of digital control techniques with the requirements of inexpensiveness and efficiency of the final product. The successfully application of solutions using non-conventional static converters awake an increasing interest in science and industry due to the promising opportunities. However, in the same time, new problems emerge whose solution is still under study and debate in the scientific community During the Ph.D. course several themes have been developed that, while obtaining the recent and growing interest of scientific community, have much space for the development of research activity and for industrial applications. The first area of research is related to the control of three phase induction motors with high dynamic performance and the sensorless control in the high speed range. The management of the operation of induction machine without position or speed sensors awakes interest in the industrial world due to the increased reliability and robustness of this solution combined with a lower cost of production and purchase of this technology compared to the others available in the market. During this dissertation control techniques will be proposed which are able to exploit the total dc link voltage and at the same time capable to exploit the maximum torque capability in whole speed range with good dynamic performance. The proposed solution preserves the simplicity of tuning of the regulators. Furthermore, in order to validate the effectiveness of presented solution, it is assessed in terms of performance and complexity and compared to two other algorithm presented in literature. The feasibility of the proposed algorithm is also tested on induction motor drive fed by a matrix converter. Another important research area is connected to the development of technology for vehicular applications. In this field the dynamic performances and the low power consumption is one of most important goals for an effective algorithm. Towards this direction, a control scheme for induction motor that integrates within a coherent solution some of the features that are commonly required to an electric vehicle drive is presented. The main features of the proposed control scheme are the capability to exploit the maximum torque in the whole speed range, a weak dependence on the motor parameters, a good robustness against the variations of the dc-link voltage and, whenever possible, the maximum efficiency. The second part of this dissertation is dedicated to the multi-phase systems. This technology, in fact, is characterized by a number of issues worthy of investigation that make it competitive with other technologies already on the market. Multiphase systems, allow to redistribute power at a higher number of phases, thus making possible the construction of electronic converters which otherwise would be very difficult to achieve due to the limits of present power electronics. Multiphase drives have an intrinsic reliability given by the possibility that a fault of a phase, caused by the possible failure of a component of the converter, can be solved without inefficiency of the machine or application of a pulsating torque. The control of the magnetic field spatial harmonics in the air-gap with order higher than one allows to reduce torque noise and to obtain high torque density motor and multi-motor applications. In one of the next chapters a control scheme able to increase the motor torque by adding a third harmonic component to the air-gap magnetic field will be presented. Above the base speed the control system reduces the motor flux in such a way to ensure the maximum torque capability. The presented analysis considers the drive constrains and shows how these limits modify the motor performance. The multi-motor applications are described by a well-defined number of multiphase machines, having series connected stator windings, with an opportune permutation of the phases these machines can be independently controlled with a single multi-phase inverter. In this dissertation this solution will be presented and an electric drive consisting of two five-phase PM tubular actuators fed by a single five-phase inverter will be presented. Finally the modulation strategies for a multi-phase inverter will be illustrated. The problem of the space vector modulation of multiphase inverters with an odd number of phases is solved in different way. An algorithmic approach and a look-up table solution will be proposed. The inverter output voltage capability will be investigated, showing that the proposed modulation strategy is able to fully exploit the dc input voltage either in sinusoidal or non-sinusoidal operating conditions. All this aspects are considered in the next chapters. In particular, Chapter 1 summarizes the mathematical model of induction motor. The Chapter 2 is a brief state of art on three-phase inverter. Chapter 3 proposes a stator flux vector control for a three- phase induction machine and compares this solution with two other algorithms presented in literature. Furthermore, in the same chapter, a complete electric drive based on matrix converter is presented. In Chapter 4 a control strategy suitable for electric vehicles is illustrated. Chapter 5 describes the mathematical model of multi-phase induction machines whereas chapter 6 analyzes the multi-phase inverter and its modulation strategies. Chapter 7 discusses the minimization of the power losses in IGBT multi-phase inverters with carrier-based pulse width modulation. In Chapter 8 an extended stator flux vector control for a seven-phase induction motor is presented. Chapter 9 concerns the high torque density applications and in Chapter 10 different fault tolerant control strategies are analyzed. Finally, the last chapter presents a positioning multi-motor drive consisting of two PM tubular five-phase actuators fed by a single five-phase inverter.
Resumo:
Nell’ambito della presente tesi verrà descritto un approccio generalizzato per il controllo delle macchine elettriche trifasi; la prima parte è incentrata nello sviluppo di una metodologia di modellizzazione generale, ossia in grado di descrivere, da un punto di vista matematico, il comportamento di una generica macchina elettrica, che possa quindi includere in sé stessa tutte le caratteristiche salienti che possano caratterizzare ogni specifica tipologia di macchina elettrica. Il passo successivo è quello di realizzare un algoritmo di controllo per macchine elettriche che si poggi sulla teoria generalizzata e che utilizzi per il proprio funzionamento quelle grandezze offerte dal modello unico delle macchine elettriche. La tipologia di controllo che è stata utilizzata è quella che comunemente viene definita come controllo ad orientamento di campo (FOC), per la quale sono stati individuati degli accorgimenti atti a migliorarne le prestazioni dinamiche e di controllo della coppia erogata. Per concludere verrà presentata una serie di prove sperimentali con lo scopo di mettere in risalto alcuni aspetti cruciali nel controllo delle macchine elettriche mediante un algoritmo ad orientamento di campo e soprattutto di verificare l’attendibilità dell’approccio generalizzato alle macchine elettriche trifasi. I risultati sperimentali confermano quindi l’applicabilità del metodo a diverse tipologie di macchine (asincrone e sincrone) e sono stati verificate nelle condizioni operative più critiche: bassa velocità, alta velocità bassi carichi, dinamica lenta e dinamica veloce.
Resumo:
The general aim of this work is to contribute to the energy performance assessment of ventilated façades by the simultaneous use of experimental data and numerical simulations. A significant amount of experimental work was done on different types of ventilated façades with natural ventilation. The measurements were taken on a test building. The external walls of this tower are rainscreen ventilated façades. Ventilation grills are located at the top and at the bottom of the tower. In this work the modelling of the test building using a dynamic thermal simulation program (ESP-r) is presented and the main results discussed. In order to investigate the best summer thermal performance of rainscreen ventilated skin façade a study for different setups of rainscreen walls was made. In particular, influences of ventilation grills, air cavity thickness, skin colour, skin material, orientation of façade were investigated. It is shown that some types of rainscreen ventilated façade typologies are capable of lowering the cooling energy demand of a few percent points.
Resumo:
Electronic applications are nowadays converging under the umbrella of the cloud computing vision. The future ecosystem of information and communication technology is going to integrate clouds of portable clients and embedded devices exchanging information, through the internet layer, with processing clusters of servers, data-centers and high performance computing systems. Even thus the whole society is waiting to embrace this revolution, there is a backside of the story. Portable devices require battery to work far from the power plugs and their storage capacity does not scale as the increasing power requirement does. At the other end processing clusters, such as data-centers and server farms, are build upon the integration of thousands multiprocessors. For each of them during the last decade the technology scaling has produced a dramatic increase in power density with significant spatial and temporal variability. This leads to power and temperature hot-spots, which may cause non-uniform ageing and accelerated chip failure. Nonetheless all the heat removed from the silicon translates in high cooling costs. Moreover trend in ICT carbon footprint shows that run-time power consumption of the all spectrum of devices accounts for a significant slice of entire world carbon emissions. This thesis work embrace the full ICT ecosystem and dynamic power consumption concerns by describing a set of new and promising system levels resource management techniques to reduce the power consumption and related issues for two corner cases: Mobile Devices and High Performance Computing.
Resumo:
Selective oxidation is one of the simplest functionalization methods and essentially all monomers used in manufacturing artificial fibers and plastics are obtained by catalytic oxidation processes. Formally, oxidation is considered as an increase in the oxidation number of the carbon atoms, then reactions such as dehydrogenation, ammoxidation, cyclization or chlorination are all oxidation reactions. In this field, most of processes for the synthesis of important chemicals used vanadium oxide-based catalysts. These catalytic systems are used either in the form of multicomponent mixed oxides and oxysalts, e.g., in the oxidation of n-butane (V/P/O) and of benzene (supported V/Mo/O) to maleic anhydride, or in the form of supported metal oxide, e.g., in the manufacture of phthalic anhydride by o-xylene oxidation, of sulphuric acid by oxidation of SO2, in the reduction of NOx with ammonia and in the ammoxidation of alkyl aromatics. In addition, supported vanadia catalysts have also been investigated for the oxidative dehydrogenation of alkanes to olefins , oxidation of pentane to maleic anhydride and the selective oxidation of methanol to formaldehyde or methyl formate [1]. During my PhD I focused my work on two gas phase selective oxidation reactions. The work was done at the Department of Industrial Chemistry and Materials (University of Bologna) in collaboration with Polynt SpA. Polynt is a leader company in the development, production and marketing of catalysts for gas-phase oxidation. In particular, I studied the catalytic system for n-butane oxidation to maleic anhydride (fluid bed technology) and for o-xylene oxidation to phthalic anhydride. Both reactions are catalyzed by systems based on vanadium, but catalysts are completely different. Part A is dedicated to the study of V/P/O catalyst for n-butane selective oxidation, while in the Part B the results of an investigation on TiO2-supported V2O5, catalyst for o-xylene oxidation are showed. In Part A, a general introduction about the importance of maleic anhydride, its uses, the industrial processes and the catalytic system are reported. The reaction is the only industrial direct oxidation of paraffins to a chemical intermediate. It is produced by n-butane oxidation either using fixed bed and fluid bed technology; in both cases the catalyst is the vanadyl pyrophosphate (VPP). Notwithstanding the good performances, the yield value didn’t exceed 60% and the system is continuously studied to improve activity and selectivity. The main open problem is the understanding of the real active phase working under reaction conditions. Several articles deal with the role of different crystalline and/or amorphous vanadium/phosphorous (VPO) compounds. In all cases, bulk VPP is assumed to constitute the core of the active phase, while two different hypotheses have been formulated concerning the catalytic surface. In one case the development of surface amorphous layers that play a direct role in the reaction is described, in the second case specific planes of crystalline VPP are assumed to contribute to the reaction pattern, and the redox process occurs reversibly between VPP and VOPO4. Both hypotheses are supported also by in-situ characterization techniques, but the experiments were performed with different catalysts and probably under slightly different working conditions. Due to complexity of the system, these differences could be the cause of the contradictions present in literature. Supposing that a key role could be played by P/V ratio, I prepared, characterized and tested two samples with different P/V ratio. Transformation occurring on catalytic surfaces under different conditions of temperature and gas-phase composition were studied by means of in-situ Raman spectroscopy, trying to investigate the changes that VPP undergoes during reaction. The goal is to understand which kind of compound constituting the catalyst surface is the most active and selective for butane oxidation reaction, and also which features the catalyst should possess to ensure the development of this surface (e.g. catalyst composition). On the basis of results from this study, it could be possible to project a new catalyst more active and selective with respect to the present ones. In fact, the second topic investigated is the possibility to reproduce the surface active layer of VPP onto a support. In general, supportation is a way to improve mechanical features of the catalysts and to overcome problems such as possible development of local hot spot temperatures, which could cause a decrease of selectivity at high conversion, and high costs of catalyst. In literature it is possible to find different works dealing with the development of supported catalysts, but in general intrinsic characteristics of VPP are worsened due to the chemical interaction between active phase and support. Moreover all these works deal with the supportation of VPP; on the contrary, my work is an attempt to build-up a V/P/O active layer on the surface of a zirconia support by thermal treatment of a precursor obtained by impregnation of a V5+ salt and of H3PO4. In-situ Raman analysis during the thermal treatment, as well as reactivity tests are used to investigate the parameters that may influence the generation of the active phase. Part B is devoted to the study of o-xylene oxidation of phthalic anhydride; industrially, the reaction is carried out in gas-phase using as catalysts a supported system formed by V2O5 on TiO2. The V/Ti/O system is quite complex; different vanadium species could be present on the titania surface, as a function of the vanadium content and of the titania surface area: (i) V species which is chemically bound to the support via oxo bridges (isolated V in octahedral or tetrahedral coordination, depending on the hydration degree), (ii) a polymeric species spread over titania, and (iii) bulk vanadium oxide, either amorphous or crystalline. The different species could have different catalytic properties therefore changing the relative amount of V species can be a way to optimize the catalytic performances of the system. For this reason, samples containing increasing amount of vanadium were prepared and tested in the oxidation of o-xylene, with the aim of find a correlations between V/Ti/O catalytic activity and the amount of the different vanadium species. The second part deals with the role of a gas-phase promoter. Catalytic surface can change under working conditions; the high temperatures and a different gas-phase composition could have an effect also on the formation of different V species. Furthermore, in the industrial practice, the vanadium oxide-based catalysts need the addition of gas-phase promoters in the feed stream, that although do not have a direct role in the reaction stoichiometry, when present leads to considerable improvement of catalytic performance. Starting point of my investigation is the possibility that steam, a component always present in oxidation reactions environment, could cause changes in the nature of catalytic surface under reaction conditions. For this reason, the dynamic phenomena occurring at the surface of a 7wt% V2O5 on TiO2 catalyst in the presence of steam is investigated by means of Raman spectroscopy. Moreover a correlation between the amount of the different vanadium species and catalytic performances have been searched. Finally, the role of dopants has been studied. The industrial V/Ti/O system contains several dopants; the nature and the relative amount of promoters may vary depending on catalyst supplier and on the technology employed for the process, either a single-bed or a multi-layer catalytic fixed-bed. Promoters have a quite remarkable effect on both activity and selectivity to phthalic anhydride. Their role is crucial, and the proper control of the relative amount of each component is fundamental for the process performance. Furthermore, it can not be excluded that the same promoter may play different role depending on reaction conditions (T, composition of gas phase..). The reaction network of phthalic anhydride formation is very complex and includes several parallel and consecutive reactions; for this reason a proper understanding of the role of each dopant cannot be separated from the analysis of the reaction scheme. One of the most important promoters at industrial level, which is always present in the catalytic formulations is Cs. It is known that Cs plays an important role on selectivity to phthalic anhydride, but the reasons of this phenomenon are not really clear. Therefore the effect of Cs on the reaction scheme has been investigated at two different temperature with the aim of evidencing in which step of the reaction network this promoter plays its role.
Resumo:
Among the experimental methods commonly used to define the behaviour of a full scale system, dynamic tests are the most complete and efficient procedures. A dynamic test is an experimental process, which would define a set of characteristic parameters of the dynamic behaviour of the system, such as natural frequencies of the structure, mode shapes and the corresponding modal damping values associated. An assessment of these modal characteristics can be used both to verify the theoretical assumptions of the project, to monitor the performance of the structural system during its operational use. The thesis is structured in the following chapters: The first introductive chapter recalls some basic notions of dynamics of structure, focusing the discussion on the problem of systems with multiply degrees of freedom (MDOF), which can represent a generic real system under study, when it is excited with harmonic force or in free vibration. The second chapter is entirely centred on to the problem of dynamic identification process of a structure, if it is subjected to an experimental test in forced vibrations. It first describes the construction of FRF through classical FFT of the recorded signal. A different method, also in the frequency domain, is subsequently introduced; it allows accurately to compute the FRF using the geometric characteristics of the ellipse that represents the direct input-output comparison. The two methods are compared and then the attention is focused on some advantages of the proposed methodology. The third chapter focuses on the study of real structures when they are subjected to experimental test, where the force is not known, like in an ambient or impact test. In this analysis we decided to use the CWT, which allows a simultaneous investigation in the time and frequency domain of a generic signal x(t). The CWT is first introduced to process free oscillations, with excellent results both in terms of frequencies, dampings and vibration modes. The application in the case of ambient vibrations defines accurate modal parameters of the system, although on the damping some important observations should be made. The fourth chapter is still on the problem of post processing data acquired after a vibration test, but this time through the application of discrete wavelet transform (DWT). In the first part the results obtained by the DWT are compared with those obtained by the application of CWT. Particular attention is given to the use of DWT as a tool for filtering the recorded signal, in fact in case of ambient vibrations the signals are often affected by the presence of a significant level of noise. The fifth chapter focuses on another important aspect of the identification process: the model updating. In this chapter, starting from the modal parameters obtained from some environmental vibration tests, performed by the University of Porto in 2008 and the University of Sheffild on the Humber Bridge in England, a FE model of the bridge is defined, in order to define what type of model is able to capture more accurately the real dynamic behaviour of the bridge. The sixth chapter outlines the necessary conclusions of the presented research. They concern the application of a method in the frequency domain in order to evaluate the modal parameters of a structure and its advantages, the advantages in applying a procedure based on the use of wavelet transforms in the process of identification in tests with unknown input and finally the problem of 3D modeling of systems with many degrees of freedom and with different types of uncertainty.
Resumo:
My project explores and compares different forms of gender performance in contemporary art and visual culture according to a perspective centered on photography. Thanks to its attesting power this medium can work as a ready-made. In fact during the 20th century it played a key role in the cultural emancipation of the body which (using a Michel Foucault’s expression) has now become «the zero point of the world». Through performance the body proves to be a living material of expression and communication while photography ensures the recording of any ephemeral event that happens in time and space. My questioning approach considers the gender constructed imagery from the 1990s to the present in order to investigate how photography’s strong aura of realism promotes and allows fantasies of transformation. The contemporary fascination with gender (especially for art and fashion) represents a crucial issue in the global context of postmodernity and is manifested in a variety of visual media, from photography to video and film. Moreover the internet along with its digital transmission of images has deeply affected our world (from culture to everyday life) leading to a postmodern preference for performativity over the more traditional and linear forms of narrativity. As a consequence individual borders get redefined by the skin itself which (dissected through instant vision) turns into a ductile material of mutation and hybridation in the service of identity. My critical assumptions are taken from the most relevant changes occurred in philosophy during the last two decades as a result of the contributions by Jacques Lacan, Michel Foucault, Jacques Derrida, Gilles Deleuze who developed a cross-disciplinary and comparative approach to interpret the crisis of modernity. They have profoundly influenced feminist studies so that the category of gender has been reassessed in contrast with sex (as a biological connotation) and in relation to history, culture, society. The ideal starting point of my research is the year 1990. I chose it as the approximate historical moment when the intersection of race, class and gender were placed at the forefront of international artistic production concerned with identity, diversity and globalization. Such issues had been explored throughout the 1970s but it was only from the mid-1980s onward that they began to be articulated more consistently. Published in 1990, the book "Gender trouble: feminism and the subversion of identity" by Judith Butler marked an important breakthrough by linking gender to performance as well as investigating the intricate connections between theory and practice, embodiment and representation. It inspired subsequent research in a variety of disciplines, art history included. In the same year Teresa de Lauretis launched the definition of queer theory to challenge the academic perspective in gay and lesbian studies. In the meantime the rise of Third Wave Feminism in the US introduced a racially and sexually inclusive vision over the global situation in order to reflect on subjectivity, new technologies and popular culture in connection with gender representation. These conceptual tools have enabled prolific readings of contemporary cultural production whether fine arts or mass media. After discussing the appropriate framework of my project and taking into account the postmodern globalization of the visual, I have turned to photography to map gender representation both in art and in fashion. Therefore I have been creating an archive of images around specific topics. I decided to include fashion photography because in the 1990s this genre moved away from the paradigm of an idealized and classical beauty toward a new vernacular allied with lifestyles, art practices, pop and youth culture; as one might expect the dominant narrative modes in fashion photography are now mainly influenced by cinema and snapshot. These strategies originate story lines and interrupted narratives using models’ performance to convey a particular imagery where identity issues emerge as an essential part of fashion spectacle. Focusing on the intersections of gender identities with socially and culturally produced identities, my approach intends to underline how the fashion world has turned to current trends in art photography and in some case turned to the artists themselves. The growing fluidity of the categories that distinguish art from fashion photography represents a particularly fruitful moment of visual exchange. Varying over time the dialogue between these two fields has always been vital; nowadays it can be studied as a result of this close relationship between contemporary art world and consumer culture. Due to the saturation of postmodern imagery the feedback between art and fashion has become much more immediate and then increasingly significant for anyone who wants to investigate the construction of gender identity through performance. In addition to that a lot of magazines founded in the 1990s bridged the worlds of art and fashion because some of their designers and even editors were art-school graduates encouraging innovation. The inclusion of art within such magazines aimed at validating them as a form of art in themselves supporting a dynamic intersection for music, fashion, design and youth culture: an intersection that also contributed to create and spread different gender stereotypes. This general interest in fashion produced many exhibitions of and about fashion itself at major international venues such as the Victoria and Albert Museum in London, the Metropolitan Museum of Art and the Solomon R. Guggenheim Museum in New York. Since then this celebrated success of fashion has been regarded as a typical element of postmodern culture. Owing to that I have also based my analysis on some important exhibitions dealing with gender performance like "Féminin-Masculin" at the Centre Pompidou of Paris (1995), "Rrose is a Rrose is a Rrose. Gender performance in photography" at the Solomon R. Guggenheim Museum of New York (1997), "Global Feminisms" at the Brooklyn Museum (2007), "Female Trouble" at the Pinakothek der Moderne in München together with the workshops dedicated to "Performance: gender and identity" in June 2005 at the Tate Modern of London. Since 2003 in Italy we have had Gender Bender - an international festival held annually in Bologna - to explore the gender imagery stemming from contemporary culture. In few days this festival offers a series of events ranging from visual arts, performance, cinema, literature to conferences and music. Being aware that any method of research is neither race nor gender neutral I have traced these critical paths to question gender identity in a multicultural perspective taking account of the political implications too. In fact, if visibility may be equated with exposure, we can also read these images as points of intersection of visibility with social power. Since gender assignations rely so heavily on the visual, the postmodern dismantling of gender certainty through performance has wide-ranging effects that need to be analyzed. In some sense this practice can even contest the dominance of visual within postmodernism. My visual map in contemporary art and fashion photography includes artists like Nan Goldin, Cindy Sherman, Hellen van Meene, Rineke Dijkstra, Ed Templeton, Ryan McGinley, Anne Daems, Miwa Yanagi, Tracey Moffat, Catherine Opie, Tomoko Sawada, Vanessa Beecroft, Yasumasa Morimura, Collier Schorr among others.
Resumo:
The objective of this study is to provide empirical evidence on how ownership structure and owner’s identity affect performance, in the banking industry by using a panel of Indonesia banks over the period 2000–2009. Firstly, we analysed the impact of the presence of multiple blockholders on bank ownership structure and performance. Building on multiple agency and principal-principal theories, we investigated whether the presence and shares dispersion across blockholders with different identities (i.e. central and regional government; families; foreign banks and financial institutions) affected bank performance, in terms of profitability and efficiency. We found that the number of blockholders has a negative effect on banks’ performance, while blockholders’ concentration has a positive effect. Moreover, we observed that the dispersion of ownership across different types of blockholders has a negative effect on banks’ performance. We interpret such results as evidence that, when heterogeneous blockholders are present, the disadvantage from conflicts of interests between blockholders seems to outweigh the advantage of the increase in additional monitoring by additional blockholder. Secondly, we conducted a joint analysis of the static, selection, and dynamic effects of different types of ownership on banks’ performance. We found that regional banks and foreign banks have a higher profitability and efficiency as compared to domestic private banks. In the short-run, foreign acquisitions and domestic M&As reduce the level of overhead costs, while in the long-run they increase the Net Interest Margin (NIM). Further, we analysed NIM determinants, to asses the impact of ownership on bank business orientation. Our findings lend support to our prediction that the NIM determinants differs accordingly to the type of bank ownership. We also observed that banks that experienced changes in ownership, such as foreign-acquired banks, manifest different interest margin determinants with respect to domestic or foreign banks that did not experience ownership rearrangements.
Resumo:
This thesis presents several data processing and compression techniques capable of addressing the strict requirements of wireless sensor networks. After introducing a general overview of sensor networks, the energy problem is introduced, dividing the different energy reduction approaches according to the different subsystem they try to optimize. To manage the complexity brought by these techniques, a quick overview of the most common middlewares for WSNs is given, describing in detail SPINE2, a framework for data processing in the node environment. The focus is then shifted on the in-network aggregation techniques, used to reduce data sent by the network nodes trying to prolong the network lifetime as long as possible. Among the several techniques, the most promising approach is the Compressive Sensing (CS). To investigate this technique, a practical implementation of the algorithm is compared against a simpler aggregation scheme, deriving a mixed algorithm able to successfully reduce the power consumption. The analysis moves from compression implemented on single nodes to CS for signal ensembles, trying to exploit the correlations among sensors and nodes to improve compression and reconstruction quality. The two main techniques for signal ensembles, Distributed CS (DCS) and Kronecker CS (KCS), are introduced and compared against a common set of data gathered by real deployments. The best trade-off between reconstruction quality and power consumption is then investigated. The usage of CS is also addressed when the signal of interest is sampled at a Sub-Nyquist rate, evaluating the reconstruction performance. Finally the group sparsity CS (GS-CS) is compared to another well-known technique for reconstruction of signals from an highly sub-sampled version. These two frameworks are compared again against a real data-set and an insightful analysis of the trade-off between reconstruction quality and lifetime is given.
Resumo:
In the last years the attentions on the energy efficiency on historical buildings grows, as different research project took place across Europe. The attention on combining, the need of the preservation of the buildings, their value and their characteristic, with the need of the reduction of energy consumption and the improvements of indoor comfort condition, stimulate the discussion of two points of view that are usually in contradiction, buildings engineer and Conservation Institution. The results are surprising because a common field is growing while remains the need of balancing the respective exigencies. From these experience results clear that many questions should be answered also from the building physicist regarding the correct assessment: on the energy consumption of this class of buildings, on the effectiveness of the measures that could be adopted, and much more. This thesis gives a contribution to answer to these questions developing a procedure to analyse the historic building. The procedure gives a guideline of the energy audit for the historical building considering the experimental activities to dial with the uncertainty of the estimation of the energy balance. It offers a procedure to simulate the energy balance of building with a validated dynamic model considering also a calibration procedure to increase the accuracy of the model. An approach of design of energy efficiency measures through an optimization that consider different aspect is also presented. All the process is applied to a real case study to give to the reader a practical understanding.
Resumo:
Mountainous areas are prone to natural hazards like rockfalls. Among the many countermeasures, rockfall protection barriers represent an effective solution to mitigate the risk. They are metallic structures designed to intercept rocks falling from unstable slopes, thus dissipating the energy deriving from the impact. This study aims at providing a better understanding of the response of several rockfall barrier types, through the development of rather sophisticated three-dimensional numerical finite elements models which take into account for the highly dynamic and non-linear conditions of such events. The models are built considering the actual geometrical and mechanical properties of real systems. Particular attention is given to the connecting details between the structural components and to their interactions. The importance of the work lies in being able to support a wide experimental activity with appropriate numerical modelling. The data of several full-scale tests carried out on barrier prototypes, as well as on their structural components, are combined with results of numerical simulations. Though the models are designed with relatively simple solutions in order to obtain a low computational cost of the simulations, they are able to reproduce with great accuracy the test results, thus validating the reliability of the numerical strategy proposed for the design of these structures. The developed models have shown to be readily applied to predict the barrier performance under different possible scenarios, by varying the initial configuration of the structures and/or of the impact conditions. Furthermore, the numerical models enable to optimize the design of these structures and to evaluate the benefit of possible solutions. Finally it is shown they can be also used as a valuable supporting tool for the operators within a rockfall risk assessment procedure, to gain crucial understanding of the performance of existing barriers in working conditions.