5 resultados para drug brain level

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

30.00% 30.00%

Publicador:

Resumo:

During the previous 10 years, global R&D expenditure in the pharmaceuticals and biotechnology sector has steadily increased, without a corresponding increase in output of new medicines. To address this situation, the biopharmaceutical industry's greatest need is to predict the failures at the earliest possible stage of the drug development process. A major key to reducing failures in drug screenings is the development and use of preclinical models that are more predictive of efficacy and safety in clinical trials. Further, relevant animal models are needed to allow a wider testing of novel hypotheses. Key to this is the developing, refining, and validating of complex animal models that directly link therapeutic targets to the phenotype of disease, allowing earlier prediction of human response to medicines and identification of safety biomarkers. Morehover, well-designed animal studies are essential to bridge the gap between test in cell cultures and people. Zebrafish is emerging, complementary to other models, as a powerful system for cancer studies and drugs discovery. We aim to investigate this research area designing a new preclinical cancer model based on the in vivo imaging of zebrafish embryogenesis. Technological advances in imaging have made it feasible to acquire nondestructive in vivo images of fluorescently labeled structures, such as cell nuclei and membranes, throughout early Zebrafishsh embryogenesis. This In vivo image-based investigation provides measurements for a large number of features at cellular level and events including nuclei movements, cells counting, and mitosis detection, thereby enabling the estimation of more significant parameters such as proliferation rate, highly relevant for investigating anticancer drug effects. In this work, we designed a standardized procedure for accessing drug activity at the cellular level in live zebrafish embryos. The procedure includes methodologies and tools that combine imaging and fully automated measurements of embryonic cell proliferation rate. We achieved proliferation rate estimation through the automatic classification and density measurement of epithelial enveloping layer and deep layer cells. Automatic embryonic cells classification provides the bases to measure the variability of relevant parameters, such as cell density, in different classes of cells and is finalized to the estimation of efficacy and selectivity of anticancer drugs. Through these methodologies we were able to evaluate and to measure in vivo the therapeutic potential and overall toxicity of Dbait and Irinotecan anticancer molecules. Results achieved on these anticancer molecules are presented and discussed; furthermore, extensive accuracy measurements are provided to investigate the robustness of the proposed procedure. Altogether, these observations indicate that zebrafish embryo can be a useful and cost-effective alternative to some mammalian models for the preclinical test of anticancer drugs and it might also provides, in the near future, opportunities to accelerate the process of drug discovery.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Great strides have been made in the last few years in the pharmacological treatment of neuropsychiatric disorders, with the introduction into the therapy of several new and more efficient agents, which have improved the quality of life of many patients. Despite these advances, a large percentage of patients is still considered “non-responder” to the therapy, not drawing any benefits from it. Moreover, these patients have a peculiar therapeutic profile, due to the very frequent application of polypharmacy, attempting to obtain satisfactory remission of the multiple aspects of psychiatric syndromes. Therapy is heavily individualised and switching from one therapeutic agent to another is quite frequent. One of the main problems of this situation is the possibility of unwanted or unexpected pharmacological interactions, which can occur both during polypharmacy and during switching. Simultaneous administration of psychiatric drugs can easily lead to interactions if one of the administered compounds influences the metabolism of the others. Impaired CYP450 function due to inhibition of the enzyme is frequent. Other metabolic pathways, such as glucuronidation, can also be influenced. The Therapeutic Drug Monitoring (TDM) of psychotropic drugs is an important tool for treatment personalisation and optimisation. It deals with the determination of parent drugs and metabolites plasma levels, in order to monitor them over time and to compare these findings with clinical data. This allows establishing chemical-clinical correlations (such as those between administered dose and therapeutic and side effects), which are essential to obtain the maximum therapeutic efficacy, while minimising side and toxic effects. It is evident the importance of developing sensitive and selective analytical methods for the determination of the administered drugs and their main metabolites, in order to obtain reliable data that can correctly support clinical decisions. During the three years of Ph.D. program, some analytical methods based on HPLC have been developed, validated and successfully applied to the TDM of psychiatric patients undergoing treatment with drugs belonging to following classes: antipsychotics, antidepressants and anxiolytic-hypnotics. The biological matrices which have been processed were: blood, plasma, serum, saliva, urine, hair and rat brain. Among antipsychotics, both atypical and classical agents have been considered, such as haloperidol, chlorpromazine, clotiapine, loxapine, risperidone (and 9-hydroxyrisperidone), clozapine (as well as N-desmethylclozapine and clozapine N-oxide) and quetiapine. While the need for an accurate TDM of schizophrenic patients is being increasingly recognized by psychiatrists, only in the last few years the same attention is being paid to the TDM of depressed patients. This is leading to the acknowledgment that depression pharmacotherapy can greatly benefit from the accurate application of TDM. For this reason, the research activity has also been focused on first and second-generation antidepressant agents, like triciclic antidepressants, trazodone and m-chlorophenylpiperazine (m-cpp), paroxetine and its three main metabolites, venlafaxine and its active metabolite, and the most recent antidepressant introduced into the market, duloxetine. Among anxiolytics-hypnotics, benzodiazepines are very often involved in the pharmacotherapy of depression for the relief of anxious components; for this reason, it is useful to monitor these drugs, especially in cases of polypharmacy. The results obtained during these three years of Ph.D. program are reliable and the developed HPLC methods are suitable for the qualitative and quantitative determination of CNS drugs in biological fluids for TDM purposes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Alzheimer's disease (AD) is a fatal neurodegenerative condition characterized clinically by progressive memory loss and irreversible cognitive deterioration. It has been shown that there is a progressive degeneration of the brain cholinergic neurons which leads to the appearance of cognitive symptoms of the disease. The aim of this work was the formulation of multifunctional nanocarriers for nasal administration of tacrine-HCl (THA). This route has many advantages; in particular is possible to convey the drug directly to the Central Nervous System, through the olfactory bulb. In particular, were prepared Albumin nanoparticles carrying beta cyclodextrin and two different beta cyclodextrin derivatives (hydroxypropyl beta cyclodextrin and sulphobutylether beta cyclodextrin), and Multifunctional liposomes, prepared using traditional excipients (cholesterol and phosphatidylcholine), partly enriched with α-tocopherol (Toc) and/or polyunsaturated fatty acids (eicosapentaenoic acid and docosahexaenoic acid) (Ω3). Both nanosystems were characterized in terms of size, Zeta potential and encapsulation efficiency. Were also evaluated their functional properties such as mucoadhesion and permeability, using an ex-vivo assay based on nasal sheep mucosa. On Liposomes were also assessed drug neuronal uptake, cell toxicity, antioxidant and, cytoprotective activity in the human neuronal cell line SH-SY5Y and finally tocopherol trans-membrane diffusion. Both the nanocarriers produced presented excellent properties and a high potential as new systems for CNS-delivery of anti-Alzheimer drugs via the nasal route.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The chronic myeloid leukemia complexity and the difficulties of disease eradication have recently led to the development of drugs which, together with the inhibitors of TK, could eliminate leukemia stem cells preventing the occurrence of relapses in patients undergoing transplantation. The Hedgehog (Hh) signaling pathway positively regulates the self-renewal and the maintenance of leukemic stem cells and not, and this function is evolutionarily conserved. Using Drosophila as a model, we studied the efficacy of the SMO inhibitor drug that inhibit the human protein Smoothened (SMO). SMO is a crucial component in the signal transduction of Hh and its blockade in mammals leads to a reduction in the disease induction. Here we show that administration of the SMO inhibitor to animals has a specific effect directed against the Drosophila ortholog protein, causing loss of quiescence and hematopoietic precursors mobilization. The SMO inhibitor induces in L3 larvae the appearance of melanotic nodules generated as response by Drosophila immune system to the increase of its hemocytes. The same phenotype is induced even by the dsRNA:SMO specific expression in hematopoietic precursors of the lymph gland. The drug action is also confirmed at cellular level. The study of molecular markers has allowed us to demonstrate that SMO inhibitor leads to a reduction of the quiescent precursors and to an increase of the differentiated cells. Moreover administering the inhibitor to heterozygous for a null allele of Smo, we observe a significant increase in the phenotype penetrance compared to administration to wild type animals. This helps to confirm the specific effect of the drug itself. These data taken together indicate that the study of inhibitors of Smo in Drosophila can represent a useful way to dissect their action mechanism at the molecular-genetic level in order to collect information applicable to the studies of the disease in humans.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The monitoring of cognitive functions aims at gaining information about the current cognitive state of the user by decoding brain signals. In recent years, this approach allowed to acquire valuable information about the cognitive aspects regarding the interaction of humans with external world. From this consideration, researchers started to consider passive application of brain–computer interface (BCI) in order to provide a novel input modality for technical systems solely based on brain activity. The objective of this thesis is to demonstrate how the passive Brain Computer Interfaces (BCIs) applications can be used to assess the mental states of the users, in order to improve the human machine interaction. Two main studies has been proposed. The first one allows to investigate whatever the Event Related Potentials (ERPs) morphological variations can be used to predict the users’ mental states (e.g. attentional resources, mental workload) during different reactive BCI tasks (e.g. P300-based BCIs), and if these information can predict the subjects’ performance in performing the tasks. In the second study, a passive BCI system able to online estimate the mental workload of the user by relying on the combination of the EEG and the ECG biosignals has been proposed. The latter study has been performed by simulating an operative scenario, in which the occurrence of errors or lack of performance could have significant consequences. The results showed that the proposed system is able to estimate online the mental workload of the subjects discriminating three different difficulty level of the tasks ensuring a high reliability.