7 resultados para drivers scheduling problem

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

90.00% 90.00%

Publicador:

Resumo:

This work presents exact, hybrid algorithms for mixed resource Allocation and Scheduling problems; in general terms, those consist into assigning over time finite capacity resources to a set of precedence connected activities. The proposed methods have broad applicability, but are mainly motivated by applications in the field of Embedded System Design. In particular, high-performance embedded computing recently witnessed the shift from single CPU platforms with application-specific accelerators to programmable Multi Processor Systems-on-Chip (MPSoCs). Those allow higher flexibility, real time performance and low energy consumption, but the programmer must be able to effectively exploit the platform parallelism. This raises interest in the development of algorithmic techniques to be embedded in CAD tools; in particular, given a specific application and platform, the objective if to perform optimal allocation of hardware resources and to compute an execution schedule. On this regard, since embedded systems tend to run the same set of applications for their entire lifetime, off-line, exact optimization approaches are particularly appealing. Quite surprisingly, the use of exact algorithms has not been well investigated so far; this is in part motivated by the complexity of integrated allocation and scheduling, setting tough challenges for ``pure'' combinatorial methods. The use of hybrid CP/OR approaches presents the opportunity to exploit mutual advantages of different methods, while compensating for their weaknesses. In this work, we consider in first instance an Allocation and Scheduling problem over the Cell BE processor by Sony, IBM and Toshiba; we propose three different solution methods, leveraging decomposition, cut generation and heuristic guided search. Next, we face Allocation and Scheduling of so-called Conditional Task Graphs, explicitly accounting for branches with outcome not known at design time; we extend the CP scheduling framework to effectively deal with the introduced stochastic elements. Finally, we address Allocation and Scheduling with uncertain, bounded execution times, via conflict based tree search; we introduce a simple and flexible time model to take into account duration variability and provide an efficient conflict detection method. The proposed approaches achieve good results on practical size problem, thus demonstrating the use of exact approaches for system design is feasible. Furthermore, the developed techniques bring significant contributions to combinatorial optimization methods.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This work presents exact algorithms for the Resource Allocation and Cyclic Scheduling Problems (RA&CSPs). Cyclic Scheduling Problems arise in a number of application areas, such as in hoist scheduling, mass production, compiler design (implementing scheduling loops on parallel architectures), software pipelining, and in embedded system design. The RA&CS problem concerns time and resource assignment to a set of activities, to be indefinitely repeated, subject to precedence and resource capacity constraints. In this work we present two constraint programming frameworks facing two different types of cyclic problems. In first instance, we consider the disjunctive RA&CSP, where the allocation problem considers unary resources. Instances are described through the Synchronous Data-flow (SDF) Model of Computation. The key problem of finding a maximum-throughput allocation and scheduling of Synchronous Data-Flow graphs onto a multi-core architecture is NP-hard and has been traditionally solved by means of heuristic (incomplete) algorithms. We propose an exact (complete) algorithm for the computation of a maximum-throughput mapping of applications specified as SDFG onto multi-core architectures. Results show that the approach can handle realistic instances in terms of size and complexity. Next, we tackle the Cyclic Resource-Constrained Scheduling Problem (i.e. CRCSP). We propose a Constraint Programming approach based on modular arithmetic: in particular, we introduce a modular precedence constraint and a global cumulative constraint along with their filtering algorithms. Many traditional approaches to cyclic scheduling operate by fixing the period value and then solving a linear problem in a generate-and-test fashion. Conversely, our technique is based on a non-linear model and tackles the problem as a whole: the period value is inferred from the scheduling decisions. The proposed approaches have been tested on a number of non-trivial synthetic instances and on a set of realistic industrial instances achieving good results on practical size problem.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In rural and isolated areas without cellular coverage, Satellite Communication (SatCom) is the best candidate to complement terrestrial coverage. However, the main challenge for future generations of wireless networks will be to meet the growing demand for new services while dealing with the scarcity of frequency spectrum. As a result, it is critical to investigate more efficient methods of utilizing the limited bandwidth; and resource sharing is likely the only choice. The research community’s focus has recently shifted towards the interference management and exploitation paradigm to meet the increasing data traffic demands. In the Downlink (DL) and Feedspace (FS), LEO satellites with an on-board antenna array can offer service to numerous User Terminals (UTs) (VSAT or Handhelds) on-ground in FFR schemes by using cutting-edge digital beamforming techniques. Considering this setup, the adoption of an effective user scheduling approach is a critical aspect given the unusually high density of User terminals on the ground as compared to the on-board available satellite antennas. In this context, one possibility is that of exploiting clustering algorithms for scheduling in LEO MU-MIMO systems in which several users within the same group are simultaneously served by the satellite via Space Division Multiplexing (SDM), and then these different user groups are served in different time slots via Time Division Multiplexing (TDM). This thesis addresses this problem by defining a user scheduling problem as an optimization problem and discusses several algorithms to solve it. In particular, focusing on the FS and user service link (i.e., DL) of a single MB-LEO satellite operating below 6 GHz, the user scheduling problem in the Frequency Division Duplex (FDD) mode is addressed. The proposed State-of-the-Art scheduling approaches are based on graph theory. The proposed solution offers high performance in terms of per-user capacity, Sum-rate capacity, SINR, and Spectral Efficiency.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Nowadays, computing is migrating from traditional high performance and distributed computing to pervasive and utility computing based on heterogeneous networks and clients. The current trend suggests that future IT services will rely on distributed resources and on fast communication of heterogeneous contents. The success of this new range of services is directly linked to the effectiveness of the infrastructure in delivering them. The communication infrastructure will be the aggregation of different technologies even though the current trend suggests the emergence of single IP based transport service. Optical networking is a key technology to answer the increasing requests for dynamic bandwidth allocation and configure multiple topologies over the same physical layer infrastructure, optical networks today are still “far” from accessible from directly configure and offer network services and need to be enriched with more “user oriented” functionalities. However, current Control Plane architectures only facilitate efficient end-to-end connectivity provisioning and certainly cannot meet future network service requirements, e.g. the coordinated control of resources. The overall objective of this work is to provide the network with the improved usability and accessibility of the services provided by the Optical Network. More precisely, the definition of a service-oriented architecture is the enable technology to allow user applications to gain benefit of advanced services over an underlying dynamic optical layer. The definition of a service oriented networking architecture based on advanced optical network technologies facilitates users and applications access to abstracted levels of information regarding offered advanced network services. This thesis faces the problem to define a Service Oriented Architecture and its relevant building blocks, protocols and languages. In particular, this work has been focused on the use of the SIP protocol as a inter-layers signalling protocol which defines the Session Plane in conjunction with the Network Resource Description language. On the other hand, an advantage optical network must accommodate high data bandwidth with different granularities. Currently, two main technologies are emerging promoting the development of the future optical transport network, Optical Burst and Packet Switching. Both technologies respectively promise to provide all optical burst or packet switching instead of the current circuit switching. However, the electronic domain is still present in the scheduler forwarding and routing decision. Because of the high optics transmission frequency the burst or packet scheduler faces a difficult challenge, consequentially, high performance and time focused design of both memory and forwarding logic is need. This open issue has been faced in this thesis proposing an high efficiently implementation of burst and packet scheduler. The main novelty of the proposed implementation is that the scheduling problem has turned into simple calculation of a min/max function and the function complexity is almost independent of on the traffic conditions.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The aim of this thesis is to present exact and heuristic algorithms for the integrated planning of multi-energy systems. The idea is to disaggregate the energy system, starting first with its core the Central Energy System, and then to proceed towards the Decentral part. Therefore, a mathematical model for the generation expansion operations to optimize the performance of a Central Energy System system is first proposed. To ensure that the proposed generation operations are compatible with the network, some extensions of the existing network are considered as well. All these decisions are evaluated both from an economic viewpoint and from an environmental perspective, as specific constraints related to greenhouse gases emissions are imposed in the formulation. Then, the thesis presents an optimization model for solar organic Rankine cycle in the context of transactive energy trading. In this study, the impact that this technology can have on the peer-to-peer trading application in renewable based community microgrids is inspected. Here the consumer becomes a prosumer and engages actively in virtual trading with other prosumers at the distribution system level. Moreover, there is an investigation of how different technological parameters of the solar Organic Rankine Cycle may affect the final solution. Finally, the thesis introduces a tactical optimization model for the maintenance operations’ scheduling phase of a Combined Heat and Power plant. Specifically, two types of cleaning operations are considered, i.e., online cleaning and offline cleaning. Furthermore, a piecewise linear representation of the electric efficiency variation curve is included. Given the challenge of solving the tactical management model, a heuristic algorithm is proposed. The heuristic works by solving the daily operational production scheduling problem, based on the final consumer’s demand and on the electricity prices. The aggregate information from the operational problem is used to derive maintenance decisions at a tactical level.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Providing support for multimedia applications on low-power mobile devices remains a significant research challenge. This is primarily due to two reasons: • Portable mobile devices have modest sizes and weights, and therefore inadequate resources, low CPU processing power, reduced display capabilities, limited memory and battery lifetimes as compared to desktop and laptop systems. • On the other hand, multimedia applications tend to have distinctive QoS and processing requirementswhichmake themextremely resource-demanding. This innate conflict introduces key research challenges in the design of multimedia applications and device-level power optimization. Energy efficiency in this kind of platforms can be achieved only via a synergistic hardware and software approach. In fact, while System-on-Chips are more and more programmable thus providing functional flexibility, hardwareonly power reduction techniques cannot maintain consumption under acceptable bounds. It is well understood both in research and industry that system configuration andmanagement cannot be controlled efficiently only relying on low-level firmware and hardware drivers. In fact, at this level there is lack of information about user application activity and consequently about the impact of power management decision on QoS. Even though operating system support and integration is a requirement for effective performance and energy management, more effective and QoSsensitive power management is possible if power awareness and hardware configuration control strategies are tightly integratedwith domain-specificmiddleware services. The main objective of this PhD research has been the exploration and the integration of amiddleware-centric energymanagement with applications and operating-system. We choose to focus on the CPU-memory and the video subsystems, since they are the most power-hungry components of an embedded system. A second main objective has been the definition and implementation of software facilities (like toolkits, API, and run-time engines) in order to improve programmability and performance efficiency of such platforms. Enhancing energy efficiency and programmability ofmodernMulti-Processor System-on-Chips (MPSoCs) Consumer applications are characterized by tight time-to-market constraints and extreme cost sensitivity. The software that runs on modern embedded systems must be high performance, real time, and even more important low power. Although much progress has been made on these problems, much remains to be done. Multi-processor System-on-Chip (MPSoC) are increasingly popular platforms for high performance embedded applications. This leads to interesting challenges in software development since efficient software development is a major issue for MPSoc designers. An important step in deploying applications on multiprocessors is to allocate and schedule concurrent tasks to the processing and communication resources of the platform. The problem of allocating and scheduling precedenceconstrained tasks on processors in a distributed real-time system is NP-hard. There is a clear need for deployment technology that addresses thesemulti processing issues. This problem can be tackled by means of specific middleware which takes care of allocating and scheduling tasks on the different processing elements and which tries also to optimize the power consumption of the entire multiprocessor platform. This dissertation is an attempt to develop insight into efficient, flexible and optimalmethods for allocating and scheduling concurrent applications tomultiprocessor architectures. It is a well-known problem in literature: this kind of optimization problems are very complex even in much simplified variants, therefore most authors propose simplified models and heuristic approaches to solve it in reasonable time. Model simplification is often achieved by abstracting away platform implementation ”details”. As a result, optimization problems become more tractable, even reaching polynomial time complexity. Unfortunately, this approach creates an abstraction gap between the optimization model and the real HW-SW platform. The main issue with heuristic or, more in general, with incomplete search is that they introduce an optimality gap of unknown size. They provide very limited or no information on the distance between the best computed solution and the optimal one. The goal of this work is to address both abstraction and optimality gaps, formulating accurate models which accounts for a number of ”non-idealities” in real-life hardware platforms, developing novel mapping algorithms that deterministically find optimal solutions, and implementing software infrastructures required by developers to deploy applications for the targetMPSoC platforms. Energy Efficient LCDBacklightAutoregulation on Real-LifeMultimediaAp- plication Processor Despite the ever increasing advances in Liquid Crystal Display’s (LCD) technology, their power consumption is still one of the major limitations to the battery life of mobile appliances such as smart phones, portable media players, gaming and navigation devices. There is a clear trend towards the increase of LCD size to exploit the multimedia capabilities of portable devices that can receive and render high definition video and pictures. Multimedia applications running on these devices require LCD screen sizes of 2.2 to 3.5 inches andmore to display video sequences and pictures with the required quality. LCD power consumption is dependent on the backlight and pixel matrix driving circuits and is typically proportional to the panel area. As a result, the contribution is also likely to be considerable in future mobile appliances. To address this issue, companies are proposing low power technologies suitable for mobile applications supporting low power states and image control techniques. On the research side, several power saving schemes and algorithms can be found in literature. Some of them exploit software-only techniques to change the image content to reduce the power associated with the crystal polarization, some others are aimed at decreasing the backlight level while compensating the luminance reduction by compensating the user perceived quality degradation using pixel-by-pixel image processing algorithms. The major limitation of these techniques is that they rely on the CPU to perform pixel-based manipulations and their impact on CPU utilization and power consumption has not been assessed. This PhDdissertation shows an alternative approach that exploits in a smart and efficient way the hardware image processing unit almost integrated in every current multimedia application processors to implement a hardware assisted image compensation that allows dynamic scaling of the backlight with a negligible impact on QoS. The proposed approach overcomes CPU-intensive techniques by saving system power without requiring either a dedicated display technology or hardware modification. Thesis Overview The remainder of the thesis is organized as follows. The first part is focused on enhancing energy efficiency and programmability of modern Multi-Processor System-on-Chips (MPSoCs). Chapter 2 gives an overview about architectural trends in embedded systems, illustrating the principal features of new technologies and the key challenges still open. Chapter 3 presents a QoS-driven methodology for optimal allocation and frequency selection for MPSoCs. The methodology is based on functional simulation and full system power estimation. Chapter 4 targets allocation and scheduling of pipelined stream-oriented applications on top of distributed memory architectures with messaging support. We tackled the complexity of the problem by means of decomposition and no-good generation, and prove the increased computational efficiency of this approach with respect to traditional ones. Chapter 5 presents a cooperative framework to solve the allocation, scheduling and voltage/frequency selection problem to optimality for energyefficient MPSoCs, while in Chapter 6 applications with conditional task graph are taken into account. Finally Chapter 7 proposes a complete framework, called Cellflow, to help programmers in efficient software implementation on a real architecture, the Cell Broadband Engine processor. The second part is focused on energy efficient software techniques for LCD displays. Chapter 8 gives an overview about portable device display technologies, illustrating the principal features of LCD video systems and the key challenges still open. Chapter 9 shows several energy efficient software techniques present in literature, while Chapter 10 illustrates in details our method for saving significant power in an LCD panel. Finally, conclusions are drawn, reporting the main research contributions that have been discussed throughout this dissertation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Crew scheduling and crew rostering are similar and related problems which can be solved by similar procedures. So far, the existing solution methods usually create a model for each one of these problems (scheduling and rostering), and when they are solved together in some cases an interaction between models is considered in order to obtain a better solution. A single set covering model to solve simultaneously both problems is presented here, where the total quantity of drivers needed is directly considered and optimized. This integration allows to optimize all of the depots at the same time, while traditional approaches needed to work depot by depot, and also it allows to see and manage the relationship between scheduling and rostering, which was known in some degree but usually not easy to quantify as this model permits. Recent research in the area of crew scheduling and rostering has stated that one of the current challenges to be achieved is to determine a schedule where crew fatigue, which depends mainly on the quality of the rosters created, is reduced. In this approach rosters are constructed in such way that stable working hours are used in every week of work, and a change to a different shift is done only using free days in between to make easier the adaptation to the new working hours. Computational results for real-world-based instances are presented. Instances are geographically diverse to test the performance of the procedures and the model in different scenarios.