12 resultados para distinctness of image

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

90.00% 90.00%

Publicador:

Resumo:

A single picture provides a largely incomplete representation of the scene one is looking at. Usually it reproduces only a limited spatial portion of the scene according to the standpoint and the viewing angle, besides it contains only instantaneous information. Thus very little can be understood on the geometrical structure of the scene, the position and orientation of the observer with respect to it remaining also hard to guess. When multiple views, taken from different positions in space and time, observe the same scene, then a much deeper knowledge is potentially achievable. Understanding inter-views relations enables construction of a collective representation by fusing the information contained in every single image. Visual reconstruction methods confront with the formidable, and still unanswered, challenge of delivering a comprehensive representation of structure, motion and appearance of a scene from visual information. Multi-view visual reconstruction deals with the inference of relations among multiple views and the exploitation of revealed connections to attain the best possible representation. This thesis investigates novel methods and applications in the field of visual reconstruction from multiple views. Three main threads of research have been pursued: dense geometric reconstruction, camera pose reconstruction, sparse geometric reconstruction of deformable surfaces. Dense geometric reconstruction aims at delivering the appearance of a scene at every single point. The construction of a large panoramic image from a set of traditional pictures has been extensively studied in the context of image mosaicing techniques. An original algorithm for sequential registration suitable for real-time applications has been conceived. The integration of the algorithm into a visual surveillance system has lead to robust and efficient motion detection with Pan-Tilt-Zoom cameras. Moreover, an evaluation methodology for quantitatively assessing and comparing image mosaicing algorithms has been devised and made available to the community. Camera pose reconstruction deals with the recovery of the camera trajectory across an image sequence. A novel mosaic-based pose reconstruction algorithm has been conceived that exploit image-mosaics and traditional pose estimation algorithms to deliver more accurate estimates. An innovative markerless vision-based human-machine interface has also been proposed, so as to allow a user to interact with a gaming applications by moving a hand held consumer grade camera in unstructured environments. Finally, sparse geometric reconstruction refers to the computation of the coarse geometry of an object at few preset points. In this thesis, an innovative shape reconstruction algorithm for deformable objects has been designed. A cooperation with the Solar Impulse project allowed to deploy the algorithm in a very challenging real-world scenario, i.e. the accurate measurements of airplane wings deformations.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Some fundamental biological processes such as embryonic development have been preserved during evolution and are common to species belonging to different phylogenetic positions, but are nowadays largely unknown. The understanding of cell morphodynamics leading to the formation of organized spatial distribution of cells such as tissues and organs can be achieved through the reconstruction of cells shape and position during the development of a live animal embryo. We design in this work a chain of image processing methods to automatically segment and track cells nuclei and membranes during the development of a zebrafish embryo, which has been largely validates as model organism to understand vertebrate development, gene function and healingrepair mechanisms in vertebrates. The embryo is previously labeled through the ubiquitous expression of fluorescent proteins addressed to cells nuclei and membranes, and temporal sequences of volumetric images are acquired with laser scanning microscopy. Cells position is detected by processing nuclei images either through the generalized form of the Hough transform or identifying nuclei position with local maxima after a smoothing preprocessing step. Membranes and nuclei shapes are reconstructed by using PDEs based variational techniques such as the Subjective Surfaces and the Chan Vese method. Cells tracking is performed by combining informations previously detected on cells shape and position with biological regularization constraints. Our results are manually validated and reconstruct the formation of zebrafish brain at 7-8 somite stage with all the cells tracked starting from late sphere stage with less than 2% error for at least 6 hours. Our reconstruction opens the way to a systematic investigation of cellular behaviors, of clonal origin and clonal complexity of brain organs, as well as the contribution of cell proliferation modes and cell movements to the formation of local patterns and morphogenetic fields.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The research aims at developing a framework for semantic-based digital survey of architectural heritage. Rooted in knowledge-based modeling which extracts mathematical constraints of geometry from architectural treatises, as-built information of architecture obtained from image-based modeling is integrated with the ideal model in BIM platform. The knowledge-based modeling transforms the geometry and parametric relation of architectural components from 2D printings to 3D digital models, and create large amount variations based on shape grammar in real time thanks to parametric modeling. It also provides prior knowledge for semantically segmenting unorganized survey data. The emergence of SfM (Structure from Motion) provides access to reconstruct large complex architectural scenes with high flexibility, low cost and full automation, but low reliability of metric accuracy. We solve this problem by combing photogrammetric approaches which consists of camera configuration, image enhancement, and bundle adjustment, etc. Experiments show the accuracy of image-based modeling following our workflow is comparable to that from range-based modeling. We also demonstrate positive results of our optimized approach in digital reconstruction of portico where low-texture-vault and dramatical transition of illumination bring huge difficulties in the workflow without optimization. Once the as-built model is obtained, it is integrated with the ideal model in BIM platform which allows multiple data enrichment. In spite of its promising prospect in AEC industry, BIM is developed with limited consideration of reverse-engineering from survey data. Besides representing the architectural heritage in parallel ways (ideal model and as-built model) and comparing their difference, we concern how to create as-built model in BIM software which is still an open area to be addressed. The research is supposed to be fundamental for research of architectural history, documentation and conservation of architectural heritage, and renovation of existing buildings.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Biomedicine is a highly interdisciplinary research area at the interface of sciences, anatomy, physiology, and medicine. In the last decade, biomedical studies have been greatly enhanced by the introduction of new technologies and techniques for automated quantitative imaging, thus considerably advancing the possibility to investigate biological phenomena through image analysis. However, the effectiveness of this interdisciplinary approach is bounded by the limited knowledge that a biologist and a computer scientist, by professional training, have of each other’s fields. The possible solution to make up for both these lacks lies in training biologists to make them interdisciplinary researchers able to develop dedicated image processing and analysis tools by exploiting a content-aware approach. The aim of this Thesis is to show the effectiveness of a content-aware approach to automated quantitative imaging, by its application to different biomedical studies, with the secondary desirable purpose of motivating researchers to invest in interdisciplinarity. Such content-aware approach has been applied firstly to the phenomization of tumour cell response to stress by confocal fluorescent imaging, and secondly, to the texture analysis of trabecular bone microarchitecture in micro-CT scans. Third, this approach served the characterization of new 3-D multicellular spheroids of human stem cells, and the investigation of the role of the Nogo-A protein in tooth innervation. Finally, the content-aware approach also prompted to the development of two novel methods for local image analysis and colocalization quantification. In conclusion, the content-aware approach has proved its benefit through building new approaches that have improved the quality of image analysis, strengthening the statistical significance to allow unveiling biological phenomena. Hopefully, this Thesis will contribute to inspire researchers to striving hard for pursuing interdisciplinarity.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Ill-conditioned inverse problems frequently arise in life sciences, particularly in the context of image deblurring and medical image reconstruction. These problems have been addressed through iterative variational algorithms, which regularize the reconstruction by adding prior knowledge about the problem's solution. Despite the theoretical reliability of these methods, their practical utility is constrained by the time required to converge. Recently, the advent of neural networks allowed the development of reconstruction algorithms that can compute highly accurate solutions with minimal time demands. Regrettably, it is well-known that neural networks are sensitive to unexpected noise, and the quality of their reconstructions quickly deteriorates when the input is slightly perturbed. Modern efforts to address this challenge have led to the creation of massive neural network architectures, but this approach is unsustainable from both ecological and economic standpoints. The recently introduced GreenAI paradigm argues that developing sustainable neural network models is essential for practical applications. In this thesis, we aim to bridge the gap between theory and practice by introducing a novel framework that combines the reliability of model-based iterative algorithms with the speed and accuracy of end-to-end neural networks. Additionally, we demonstrate that our framework yields results comparable to state-of-the-art methods while using relatively small, sustainable models. In the first part of this thesis, we discuss the proposed framework from a theoretical perspective. We provide an extension of classical regularization theory, applicable in scenarios where neural networks are employed to solve inverse problems, and we show there exists a trade-off between accuracy and stability. Furthermore, we demonstrate the effectiveness of our methods in common life science-related scenarios. In the second part of the thesis, we initiate an exploration extending the proposed method into the probabilistic domain. We analyze some properties of deep generative models, revealing their potential applicability in addressing ill-posed inverse problems.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Although in Europe and in the USA many studies focus on organic, little is known on the topic in China. This research provides an insight on Shanghai consumers’ perception of organic, aiming at understanding and representing in graphic form the network of mental associations that stems from the organic concept. To acquire, process and aggregate the individual networks it was used the “Brand concept mapping” methodology (Roedder et al., 2006), while the data analysis was carried out also using analytic procedures. The results achieved suggest that organic food is perceived as healthy, safe and costly. Although these attributes are pretty much consistent with the European perception, some relevant differences emerged. First, organic is not necessarily synonymous with natural product in China, also due to a poor translation of the term in the Chinese language that conveys the idea of a manufactured product. Secondly, the organic label has to deal with the competition with the green food label in terms of image and positioning on the market, since they are easily associated and often confused. “Environmental protection” also emerged as relevant association, while the ethical and social values were not mentioned. In conclusion, health care and security concerns are the factors that influence most the food consumption in China (many people are so concerned about food safety that they found it difficult to shop), and the associations “Safe”, “Pure and natural”, “without chemicals” and “healthy” have been identified as the best candidates for leveraging a sound image of organic food .

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The term Ambient Intelligence (AmI) refers to a vision on the future of the information society where smart, electronic environment are sensitive and responsive to the presence of people and their activities (Context awareness). In an ambient intelligence world, devices work in concert to support people in carrying out their everyday life activities, tasks and rituals in an easy, natural way using information and intelligence that is hidden in the network connecting these devices. This promotes the creation of pervasive environments improving the quality of life of the occupants and enhancing the human experience. AmI stems from the convergence of three key technologies: ubiquitous computing, ubiquitous communication and natural interfaces. Ambient intelligent systems are heterogeneous and require an excellent cooperation between several hardware/software technologies and disciplines, including signal processing, networking and protocols, embedded systems, information management, and distributed algorithms. Since a large amount of fixed and mobile sensors embedded is deployed into the environment, the Wireless Sensor Networks is one of the most relevant enabling technologies for AmI. WSN are complex systems made up of a number of sensor nodes which can be deployed in a target area to sense physical phenomena and communicate with other nodes and base stations. These simple devices typically embed a low power computational unit (microcontrollers, FPGAs etc.), a wireless communication unit, one or more sensors and a some form of energy supply (either batteries or energy scavenger modules). WNS promises of revolutionizing the interactions between the real physical worlds and human beings. Low-cost, low-computational power, low energy consumption and small size are characteristics that must be taken into consideration when designing and dealing with WSNs. To fully exploit the potential of distributed sensing approaches, a set of challengesmust be addressed. Sensor nodes are inherently resource-constrained systems with very low power consumption and small size requirements which enables than to reduce the interference on the physical phenomena sensed and to allow easy and low-cost deployment. They have limited processing speed,storage capacity and communication bandwidth that must be efficiently used to increase the degree of local ”understanding” of the observed phenomena. A particular case of sensor nodes are video sensors. This topic holds strong interest for a wide range of contexts such as military, security, robotics and most recently consumer applications. Vision sensors are extremely effective for medium to long-range sensing because vision provides rich information to human operators. However, image sensors generate a huge amount of data, whichmust be heavily processed before it is transmitted due to the scarce bandwidth capability of radio interfaces. In particular, in video-surveillance, it has been shown that source-side compression is mandatory due to limited bandwidth and delay constraints. Moreover, there is an ample opportunity for performing higher-level processing functions, such as object recognition that has the potential to drastically reduce the required bandwidth (e.g. by transmitting compressed images only when something ‘interesting‘ is detected). The energy cost of image processing must however be carefully minimized. Imaging could play and plays an important role in sensing devices for ambient intelligence. Computer vision can for instance be used for recognising persons and objects and recognising behaviour such as illness and rioting. Having a wireless camera as a camera mote opens the way for distributed scene analysis. More eyes see more than one and a camera system that can observe a scene from multiple directions would be able to overcome occlusion problems and could describe objects in their true 3D appearance. In real-time, these approaches are a recently opened field of research. In this thesis we pay attention to the realities of hardware/software technologies and the design needed to realize systems for distributed monitoring, attempting to propose solutions on open issues and filling the gap between AmI scenarios and hardware reality. The physical implementation of an individual wireless node is constrained by three important metrics which are outlined below. Despite that the design of the sensor network and its sensor nodes is strictly application dependent, a number of constraints should almost always be considered. Among them: • Small form factor to reduce nodes intrusiveness. • Low power consumption to reduce battery size and to extend nodes lifetime. • Low cost for a widespread diffusion. These limitations typically result in the adoption of low power, low cost devices such as low powermicrocontrollers with few kilobytes of RAMand tenth of kilobytes of program memory with whomonly simple data processing algorithms can be implemented. However the overall computational power of the WNS can be very large since the network presents a high degree of parallelism that can be exploited through the adoption of ad-hoc techniques. Furthermore through the fusion of information from the dense mesh of sensors even complex phenomena can be monitored. In this dissertation we present our results in building several AmI applications suitable for a WSN implementation. The work can be divided into two main areas:Low Power Video Sensor Node and Video Processing Alghoritm and Multimodal Surveillance . Low Power Video Sensor Nodes and Video Processing Alghoritms In comparison to scalar sensors, such as temperature, pressure, humidity, velocity, and acceleration sensors, vision sensors generate much higher bandwidth data due to the two-dimensional nature of their pixel array. We have tackled all the constraints listed above and have proposed solutions to overcome the current WSNlimits for Video sensor node. We have designed and developed wireless video sensor nodes focusing on the small size and the flexibility of reuse in different applications. The video nodes target a different design point: the portability (on-board power supply, wireless communication), a scanty power budget (500mW),while still providing a prominent level of intelligence, namely sophisticated classification algorithmand high level of reconfigurability. We developed two different video sensor node: The device architecture of the first one is based on a low-cost low-power FPGA+microcontroller system-on-chip. The second one is based on ARM9 processor. Both systems designed within the above mentioned power envelope could operate in a continuous fashion with Li-Polymer battery pack and solar panel. Novel low power low cost video sensor nodes which, in contrast to sensors that just watch the world, are capable of comprehending the perceived information in order to interpret it locally, are presented. Featuring such intelligence, these nodes would be able to cope with such tasks as recognition of unattended bags in airports, persons carrying potentially dangerous objects, etc.,which normally require a human operator. Vision algorithms for object detection, acquisition like human detection with Support Vector Machine (SVM) classification and abandoned/removed object detection are implemented, described and illustrated on real world data. Multimodal surveillance: In several setup the use of wired video cameras may not be possible. For this reason building an energy efficient wireless vision network for monitoring and surveillance is one of the major efforts in the sensor network community. Energy efficiency for wireless smart camera networks is one of the major efforts in distributed monitoring and surveillance community. For this reason, building an energy efficient wireless vision network for monitoring and surveillance is one of the major efforts in the sensor network community. The Pyroelectric Infra-Red (PIR) sensors have been used to extend the lifetime of a solar-powered video sensor node by providing an energy level dependent trigger to the video camera and the wireless module. Such approach has shown to be able to extend node lifetime and possibly result in continuous operation of the node.Being low-cost, passive (thus low-power) and presenting a limited form factor, PIR sensors are well suited for WSN applications. Moreover techniques to have aggressive power management policies are essential for achieving long-termoperating on standalone distributed cameras needed to improve the power consumption. We have used an adaptive controller like Model Predictive Control (MPC) to help the system to improve the performances outperforming naive power management policies.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fino dagli albori della metodica scientifica, l’osservazione e la vista hanno giocato un ruolo fondamentale. La patologia è una scienza visiva, dove le forme, i colori, le interfacce e le architetture di organi, tessuti, cellule e componenti cellulari guidano l’occhio del patologo e ne indirizzano la scelta diagnostico-classificativa. L’osservazione del preparato istologico in microscopia ottica si attua mediante l’esame e la caratterizzazione di anomalie ad ingrandimenti progressivamente crescenti, a diverse scale spaziali, che partono dalla valutazione dell’assetto architettonico sovracellulare, per poi spostarsi ad investigare e descrivere le cellule e le peculiarità citomorfologiche delle stesse. A differenza di altri esami di laboratorio che sono pienamente quantificabili, l’analisi istologica è intrinsecamente soggettiva, e quindi incline ad un alto grado di variabilità nei risultati prodotti da differenti patologi. L’analisi d’immagine, l’estrazione da un’immagine digitale di contenuti utili, rappresenta una metodica oggettiva, valida e robusta ormai largamente impiegata a completamento del lavoro del patologo. Si sottolinea come l’analisi d’immagine possa essere vista come fase descrittiva quantitativa di preparati macroscopici e microscopici che poi viene seguita da una interpretazione. Nuovamente si sottolinea come questi descrittori siano oggettivi, ripetibili e riproducibili, e non soggetti a bassa concordanza inter operatore. La presente tesi si snoda attraverso un percorso concettuale orientato ad applicazioni di analisi d’immagine e patologia quantitativa che parte dalle applicazioni più elementari (densità, misure lineari), per arrivare a nozioni più avanzate, quali lo studio di complessità delle forme mediante l’analisi frattale e la quantificazione del pattern spaziale di strutture sovracellulari.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Non Destructive Testing (NDT) and Structural Health Monitoring (SHM) are becoming essential in many application contexts, e.g. civil, industrial, aerospace etc., to reduce structures maintenance costs and improve safety. Conventional inspection methods typically exploit bulky and expensive instruments and rely on highly demanding signal processing techniques. The pressing need to overcome these limitations is the common thread that guided the work presented in this Thesis. In the first part, a scalable, low-cost and multi-sensors smart sensor network is introduced. The capability of this technology to carry out accurate modal analysis on structures undergoing flexural vibrations has been validated by means of two experimental campaigns. Then, the suitability of low-cost piezoelectric disks in modal analysis has been demonstrated. To enable the use of this kind of sensing technology in such non conventional applications, ad hoc data merging algorithms have been developed. In the second part, instead, imaging algorithms for Lamb waves inspection (namely DMAS and DS-DMAS) have been implemented and validated. Results show that DMAS outperforms the canonical Delay and Sum (DAS) approach in terms of image resolution and contrast. Similarly, DS-DMAS can achieve better results than both DMAS and DAS by suppressing artefacts and noise. To exploit the full potential of these procedures, accurate group velocity estimations are required. Thus, novel wavefield analysis tools that can address the estimation of the dispersion curves from SLDV acquisitions have been investigated. An image segmentation technique (called DRLSE) was exploited in the k-space to draw out the wavenumber profile. The DRLSE method was compared with compressive sensing methods to extract the group and phase velocity information. The validation, performed on three different carbon fibre plates, showed that the proposed solutions can accurately determine the wavenumber and velocities in polar coordinates at multiple excitation frequencies.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The subject of this doctoral dissertation concerns the definition of a new methodology for the morphological and morphometric study of fossilized human teeth, and therefore strives to provide a contribution to the reconstruction of human evolutionary history that proposes to extend to the different species of hominid fossils. Standardized investigative methodologies are lacking both regarding the orientation of teeth subject to study and in the analysis that can be carried out on these teeth once they are oriented. The opportunity to standardize a primary analysis methodology is furnished by the study of certain early Neanderthal and preneanderthal molars recovered in two caves in southern Italy [Grotta Taddeo (Taddeo Cave) and Grotta del Poggio (Poggio Cave), near Marina di Camerata, Campania]. To these we can add other molars of Neanderthal and modern man of the upper Paleolithic era, specifically scanned in the paleoanthropology laboratory of the University of Arkansas (Fayetteville, Arkansas, USA), in order to increase the paleoanthropological sample data and thereby make the final results of the analyses more significant. The new analysis methodology is rendered as follows: 1. Standardization of an orientation system for primary molars (superior and inferior), starting from a scan of a sample of 30 molars belonging to modern man (15 M1 inferior and 15 M1 superior), the definition of landmarks, the comparison of various systems and the choice of a system of orientation for each of the two dental typologies. 2. The definition of an analysis procedure that considers only the first 4 millimeters of the dental crown starting from the collar: 5 sections parallel to the plane according to which the tooth has been oriented are carried out, spaced 1 millimeter between them. The intention is to determine a method that allows for the differentiation of fossilized species even in the presence of worn teeth. 3. Results and Conclusions. The new approach to the study of teeth provides a considerable quantity of information that can better be evaluated by increasing the fossil sample data. It has been demonstrated to be a valid tool in evolutionary classification that has allowed (us) to differentiate the Neanderthal sample from that of modern man. In a particular sense the molars of Grotta Taddeo, which up until this point it has not been possible to determine with exactness their species of origin, through the present research they are classified as Neanderthal.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This thesis investigates two distinct research topics. The main topic (Part I) is the computational modelling of cardiomyocytes derived from human stem cells, both embryonic (hESC-CM) and induced-pluripotent (hiPSC-CM). The aim of this research line lies in developing models of the electrophysiology of hESC-CM and hiPSC-CM in order to integrate the available experimental data and getting in-silico models to be used for studying/making new hypotheses/planning experiments on aspects not fully understood yet, such as the maturation process, the functionality of the Ca2+ hangling or why the hESC-CM/hiPSC-CM action potentials (APs) show some differences with respect to APs from adult cardiomyocytes. Chapter I.1 introduces the main concepts about hESC-CMs/hiPSC-CMs, the cardiac AP, and computational modelling. Chapter I.2 presents the hESC-CM AP model, able to simulate the maturation process through two developmental stages, Early and Late, based on experimental and literature data. Chapter I.3 describes the hiPSC-CM AP model, able to simulate the ventricular-like and atrial-like phenotypes. This model was used to assess which currents are responsible for the differences between the ventricular-like AP and the adult ventricular AP. The secondary topic (Part II) consists in the study of texture descriptors for biological image processing. Chapter II.1 provides an overview on important texture descriptors such as Local Binary Pattern or Local Phase Quantization. Moreover the non-binary coding and the multi-threshold approach are here introduced. Chapter II.2 shows that the non-binary coding and the multi-threshold approach improve the classification performance of cellular/sub-cellular part images, taken from six datasets. Chapter II.3 describes the case study of the classification of indirect immunofluorescence images of HEp2 cells, used for the antinuclear antibody clinical test. Finally the general conclusions are reported.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Perfusion CT imaging of the liver has potential to improve evaluation of tumour angiogenesis. Quantitative parameters can be obtained applying mathematical models to Time Attenuation Curve (TAC). However, there are still some difficulties for an accurate quantification of perfusion parameters due, for example, to algorithms employed, to mathematical model, to patient’s weight and cardiac output and to the acquisition system. In this thesis, new parameters and alternative methodologies about liver perfusion CT are presented in order to investigate the cause of variability of this technique. Firstly analysis were made to assess the variability related to the mathematical model used to compute arterial Blood Flow (BFa) values. Results were obtained implementing algorithms based on “ maximum slope method” and “Dual input one compartment model” . Statistical analysis on simulated data demonstrated that the two methods are not interchangeable. Anyway slope method is always applicable in clinical context. Then variability related to TAC processing in the application of slope method is analyzed. Results compared with manual selection allow to identify the best automatic algorithm to compute BFa. The consistency of a Standardized Perfusion Index (SPV) was evaluated and a simplified calibration procedure was proposed. At the end the quantitative value of perfusion map was analyzed. ROI approach and map approach provide related values of BFa and this means that pixel by pixel algorithm give reliable quantitative results. Also in pixel by pixel approach slope method give better results. In conclusion the development of new automatic algorithms for a consistent computation of BFa and the analysis and definition of simplified technique to compute SPV parameter, represent an improvement in the field of liver perfusion CT analysis.