2 resultados para discretely complete space
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
Coordinating activities in a distributed system is an open research topic. Several models have been proposed to achieve this purpose such as message passing, publish/subscribe, workflows or tuple spaces. We have focused on the latter model, trying to overcome some of its disadvantages. In particular we have applied spatial database techniques to tuple spaces in order to increase their performance when handling a large number of tuples. Moreover, we have studied how structured peer to peer approaches can be applied to better distribute tuples on large networks. Using some of these result, we have developed a tuple space implementation for the Globus Toolkit that can be used by Grid applications as a coordination service. The development of such a service has been quite challenging due to the limitations imposed by XML serialization that have heavily influenced its design. Nevertheless, we were able to complete its implementation and use it to implement two different types of test applications: a completely parallelizable one and a plasma simulation that is not completely parallelizable. Using this last application we have compared the performance of our service against MPI. Finally, we have developed and tested a simple workflow in order to show the versatility of our service.
Resumo:
The thesis work concerns X-ray spectrometry for both medical and space applications and is divided into two sections. The first section addresses an X-ray spectrometric system designed to study radiological beams and is devoted to the optimization of diagnostic procedures in medicine. A parametric semi-empirical model capable of efficiently reconstructing diagnostic X-ray spectra in 'middle power' computers was developed and tested. In addition, different silicon diode detectors were tested as real-time detectors in order to provide a real-time evaluation of the spectrum during diagnostic procedures. This project contributes to the field by presenting an improved simulation of a realistic X-ray beam emerging from a common X-ray tube with a complete and detailed spectrum that lends itself to further studies of added filtration, thus providing an optimized beam for different diagnostic applications in medicine. The second section describes the preliminary tests that have been carried out on the first version of an Application Specific Integrated Circuit (ASIC), integrated with large area position-sensitive Silicon Drift Detector (SDD) to be used on board future space missions. This technology has been developed for the ESA project: LOFT (Large Observatory for X-ray Timing), a new medium-class space mission that the European Space Agency has been assessing since February of 2011. The LOFT project was proposed as part of the Cosmic Vision Program (2015-2025).