2 resultados para diameter of stem

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In wheat, stem rust is known to rapidly evolve new virulence to resistance genes. While more than 50 stem rust resistance (Sr) loci have been identified in wheat, only a few remain effective, particularly against the highly virulent race Ug99 (TTKSK race) and a mixture of durum-specific races. An association mapping (AM) study based on 183 durum wheat accessions was utilized to identify resistance loci for stem rust response in Ethiopia over four seasons and artificial inoculation with Ug99 (TTKSK race) and a mixture of durum-specific races under field conditions as well as in greenhouse test at seedling stage under controlled conditions for resistance to four highly virulent stem rust races: TRTTF, TTTTF, (TTKSK (Ug99) and JRCQC. The panel was profiled with 1,253 SSR and DArT markers. Twelve QTL-tagging markers were significant (P < 0.05) across three to four seasons. The role of Sr13, Sr9, Sr14, Sr17, and Sr28 was confirmed. Thirteen significant markers were in regions with no Sr genes/QTLs. The results under controlled conditions showed that 15, 20, 19 and 19 chromosome regions harbored markers that showed significant effects for races TRTTF, TTTTF, TTKSK and JRCQC, respectively. These genomic regions showed marker R2 values ranging from 1.13 to 8.34, 1.92 to 17.64, 1.75 to 23.12 and 1.51 to 15.33% for races TRTTF, TTTTF, TTKSK and JRCQC, respectively. The study demonstrates that stem rust resistance in durum wheat is governed in part by shared loci and in part by race-specific ones. The QTLs identified in this study through AM will be useful in the marker-assisted development of durum wheat cultivars with durable stem rust resistance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Basal-like tumor is an aggressive breast carcinoma subtype that displays an expression signature similar to that of the basal/myoepithelial cells of the breast tissue. Basal-like carcinoma are characterized by over-expression of the Epidermal Growth Factor receptor (EGFR), high frequency of p53 mutations, cytoplasmic/nuclear localization of beta-catenin, overexpression of the Hypoxia inducible factor (HIF)-1alpha target Carbonic Anhydrase isoenzime 9 (CA9) and a gene expression pattern similar to that of normal and cancer stem cells, including the over-expression of the mammary stem cell markers CD44. In this study we investigated the role of p53, EGFR, beta-catenin and HIF-1alpha in the regulation of stem cell features and genes associated with the basal-like gene expression profile. The findings reported in this investigation indicate that p53 inactivation in ductal breast carcinoma cells leads to increased EGFR mRNA and protein levels. In our experimental model, EGFR overexpression induces beta-catenin cytoplasmatic stabilization and transcriptional activity and, by that, leads to increased aggressive features including mammosphere (MS) forming and growth capacity, invasive potential and overexpression of the mammary stem cell gene CD44. Moreover we found that EGFR/beta-catenin axis promotes hypoxia survival in breast carcinoma cells via increased CA9 expression. Indeed beta-catenin positively regulates CA9 expression upon hypoxia exposure. Interestingly we found that beta-catenin inhibits HIF-1alpha transcriptional activity. Looking for the mechanism, we found that CA9 expression is promoted by HIF-1alpha and cytoplasmatic beta-catenin further increased it post-transcriptionally, via direct mRNA binding and stabilization. These data reveal a functional beta-catenin/HIF-1alpha interplay among hallmarks of basal-like tumors and unveil a new functional role for cytoplasmic beta-catenin in the phenotype of such tumors. Therefore it can be proposed that the interplay here described among EGFR/beta-catenin and HIF-1alpha may play a role in breast cancer stem cell survival and function.