4 resultados para diabetic nephropathy

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Introduction. Neutrophil Gelatinase-Associated Lipocalin (NGAL) belongs to the family of lipocalins and it is produced by several cell types, including renal tubular epithelium. In the kidney its production increases during acute damage and this is reflected by the increase in serum and urine levels. In animal studies and clinical trials, NGAL was found to be a sensitive and specific indicator of acute kidney injury (AKI). Purpose. The aim of this work was to investigate, in a prospective manner, whether urine NGAL can be used as a marker in preeclampsia, kidney transplantation, VLBI and diabetic nephropathy. Materials and methods. The study involved 44 consecutive patients who received renal transplantation; 18 women affected by preeclampsia (PE); a total of 55 infants weighing ≤1500 g and 80 patients with Type 1 diabetes. Results. A positive correlation was found between urinary NGAL and 24 hours proteinuria within the PE group. The detection of higher uNGAL values in case of severe PE, even in absence of statistical significance, confirms that these women suffer from an initial renal damage. In our population of VLBW infants, we found a positive correlation of uNGAL values at birth with differences in sCreat and eGFR values from birth to day 21, but no correlation was found between uNGAL values at birth and sCreat and eGFR at day 7. systolic an diastolic blood pressure decreased with increasing levels of uNGAL. The patients with uNGAL <25 ng/ml had significantly higher levels of systolic blood pressure compared with the patients with uNGAL >50 ng/ml ( p<0.005). Our results indicate the ability of NGAL to predict the delay in functional recovery of the graft. Conclusions. In acute renal pathology, urinary NGAL confirms to be a valuable predictive marker of the progress and status of acute injury.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

INTRODUCTION – In human medicine, diabetes mellitus (DM), hypertension, proteinuria and nephropathy are often associated although it is still not clear whether hypertension is the consequence or the cause of nephropathy and albuminuria. Microalbuminuria, in humans, is an early and sensitive marker which permits timely and effective therapy in the early phase of renal damage. Conversely, in dogs, these relationships were not fully investigated, even though hypertension has been associated with many diseases (Bodey and Michell, 1996). In a previous study, 20% of diabetic dogs were found proteinuric based on a U:P/C > 1 and 46% were hypertensive; this latter finding is similar to the prevalence of hypertension in diabetic people (40-80%) (Struble et al., 1998). In the same canine study, hypertension was also positively correlated with the duration of the disease, as is the case in human beings. Hypertension was also found to be a common complication of hypercortisolism (HC) in dogs, with a prevalence which varies from 50 (Goy-Thollot et al., 2002) to 80% (Danese and Aron, 1994).The aim of our study was to evaluate the urinary albumin to creatinine ratio (U:A/C) in dogs affected by Diabetes Mellitus and HC in order to ascertain if, as in human beings, it could represent an early and more sensitive marker of renal damage than U:P/C. Furthermore, the relationship between proteinuria and hypertension in DM and HC was also investigated. MATERIALS AND METHODS – Twenty dogs with DM, 14 with HC and 21 healthy dogs (control group) were included in the prospective case-control study. Inclusion criteria were hyperglycaemia, glicosuria and serum fructosamine above the reference range for DM dogs and a positive ACTH stimulation test and/or low-dose dexamethasone test and consistent findings of HC on abdominal ultrasonography in HC dogs. Dogs were excluded if affected by urinary tract infections and if the serum creatinine or urea values were above the reference range. At the moment of inclusion, an appropriate therapy had already been instituted less than 1 month earlier in 12 diabetic dogs. The control dogs were considered healthy based on clinical exam and clinicopathological findings. All dogs underwent urine sample collection by cystocentesis and systemic blood pressure measurement by means of either an oscillometric device (BP-88 Next, Colin Corporation, Japan) or by Doppler ultrasonic traducer (Minidop ES-100VX, Hadeco, Japan). The choice of method depended on the dog’s body weight: Doppler ultrasonography was employed in dogs < 20 kg of body weight and the oscillometric method in the other subjects. Dogs were considered hypertensive whenever systemic blood pressure was found ≥ 160 mmHg. The urine was assayed for U:P/C and U:A/C (Gentilini et al., 2005). The data between groups were compared using the Mann-Whitney U test. The reference ranges for U:P/C and U:A/C had already been established by our laboratory as 0.6 and 0.05, respectively. U:P/C and U:A/C findings were correlated to systemic blood pressure and Spearman R correlation coefficients were calculated. In all cases, p < 0.05 was considered statistically significant. RESULTS – The mean ± sd urinary albumin concentration in the three groups was 1.79 mg/dl ± 2.18; 20.02 mg/dl ± 43.25; 52.02 mg/dl ± 98.27, in healthy, diabetic and hypercortisolemic dogs, respectively. The urine albumin concentration differed significantly between healthy and diabetic dogs (p = 0.008) and between healthy and HC dogs (p = 0.011). U:A/C values ranged from 0.00 to 0.34 (mean ± sd 0.02 ± 0.07), 0.00 to 6.72 (mean ± sd 0.62 ± 1.52) and 0.00 to 5.52 (mean ± sd 1.27 ± 1.70) in the control, DM and HC groups, respectively; U:P/C values ranged from 0.1 to 0.6 (mean ± sd 0.17 ± 0.15) 0.1 to 6.6 (mean ± sd 0.93 ± 1.15) and 0.2 to 7.1 (mean ± sd 1.90 ± 2.11) in the control, DM and HC groups, respectively. In diabetic dogs, U:A/C was above the reference range in 11 out of 20 dogs (55%). Among these, 5/20 (25%) showed an increase only in the U:A/C ratio while, in 6/20 (30%), both the U:P/C and the U:A/C were abnormal. Among the latter, 4 dogs had already undergone therapy. In subjects affected with HC, U:P/C and U:A/C were both increased in 10/14 (71%) while in 2/14 (14%) only U:A/C was above the reference range. Overall, by comparing U:P/C and U:A/C in the various groups, a significant increase in protein excretion in disease-affected animals compared to healthy dogs was found. Blood pressure (BP) in diabetic subjects ranged from 88 to 203 mmHg (mean ± sd 143 ± 33 mmHg) and 7/20 (35%) dogs were found to be hypertensive. In HC dogs, BP ranged from 116 to 200 mmHg (mean ± sd 167 ± 26 mmHg) and 9/14 (64%) dogs were hypertensive. Blood pressure and proteinuria were not significantly correlated. Furthermore, in the DM group, U:P/C and U:A/C were both increased in 3 hypertensive dogs and 2 normotensive dogs while the only increase of U:A/C was observed in 2 hypertensive and 3 normotensive dogs. In the HC group, the U:P/C and the U:A/C were both increased in 6 hypertensive and 2 normotensive dogs; the U:A/C was the sole increased parameter in 1 hypertensive dog and in 1 dog with normal pressure. DISCUSSION AND CONCLUSION- The findings of this study suggest that, in dogs affected by DM and HC, an increase in U:P/C, U:A/C and systemic hypertension is frequently present. Remarkably, some dogs affected by both DM and HC showed an U:A/C but not U:P/C above the reference range. In diabetic dogs, albuminuria was observed in 25% of the subjects, suggesting the possibility that this parameter could be employed for detecting renal damage at an early phase when common semiquantiative tests and even U:P/C fall inside the reference range. In HC dogs, a higher number of subjects with overt proteinuria was found while only 14% presented an increase only in the U:A/C. This fact, associated with a greater number of hypertensive dogs having HC rather than DM, could suggest a greater influence on renal function by the mechanisms involved in hypertension secondary to hypercortisolemia. Furthermore, it is possible that, in HC dogs, the diagnosis was more delayed than in DM dogs. However, the lack of a statistically significant correlation between hypertension and increased protein excretion as well as the apparently random distribution of proteinuric subjects in normotensive and hypertensive cases, imply that other factors besides hypertension are involved in causing proteinuria. Longitudinal studies are needed to further investigate the relationship between hypertension and proteinuria.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background. Hhereditary cystic kidney diseases are a heterogeneous spectrum of disorders leading to renal failure. Clinical features and family history can help to distinguish the recessive from dominant diseases but the differential diagnosis is difficult due the phenotypic overlap. The molecular diagnosis is often the only way to characterize the different forms. A conventional molecular screening is suitable for small genes but is expensive and time-consuming for large size genes. Next Generation Sequencing (NGS) technologies enables massively parallel sequencing of nucleic acid fragments. Purpose. The first purpose was to validate a diagnostic algorithm useful to drive the genetic screening. The second aim was to validate a NGS protocol of PKHD1 gene. Methods. DNAs from 50 patients were submitted to conventional screening of NPHP1, NPHP5, UMOD, REN and HNF1B genes. 5 patients with known mutations in PKHD1 were submitted to NGS to validate the new method and a not genotyped proband with his parents were analyzed for a diagnostic application. Results. The conventional molecular screening detected 8 mutations: 1) the novel p.E48K of REN in a patient with cystic nephropathy, hyperuricemia, hyperkalemia and anemia; 2) p.R489X of NPHP5 in a patient with Senior Loken Syndrome; 3) pR295C of HNF1B in a patient with renal failure and diabetes.; 4) the NPHP1 deletion in 3 patients with medullar cysts; 5) the HNF1B deletion in a patient with medullar cysts and renal hypoplasia and in a diabetic patient with liver disease. The NGS of PKHD1 detected all known mutations and two additional variants during the validation. The diagnostic NGS analysis identified the patient’s compound heterozygosity with a maternal frameshift mutation and a paternal missense mutation besides a not transmitted paternal missense mutation. Conclusions. The results confirm the validity of our diagnostic algorithm and suggest the possibility to introduce this NGS protocol to clinical practice.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Urine is considered an ideal source of biomarkers, however in veterinary medicine a complete study on the urine proteome is still lacking. The present work aimed to apply proteomic techniques to the separation of the urine proteome in dogs, cats, horses, cows and some non-conventional species. High resolution electrophoresis (HRE) was also validated for the quantification of albuminuria in dogs and cats. In healthy cats, applying SDS-PAGE and 2DE coupled to mass spectrometry (MS), was produced a reference map of the urine proteome. Moreover, 13 differentially represented urine proteins were linked with CKD, suggesting uromodulin, cauxin, CFAD, Apo-H, RBP and CYSM as candidate biomarkers to be investigated further. In dogs, applying SDS-PAGE coupled to MS, was highlighted a specific pattern in healthy animals showing important differences in patients affected by leishmaniasis. In particular, uromodulin could be a putative biomarker of tubular damage while arginine esterase and low MW proteins needs to be investigated further. In cows, applying SDS-PAGE, were highlighted different patterns between heifers and cows showing some interesting changes during pregnancy. In particular, putative alpha-fetoprotein and b-PAP needs to be further investigated. In horses, applying SDS-PAGE, was produced a reference profile characterized by 13±4 protein bands and the most represented one was the putative uromodulin. Proteinuric horses showed the decrease of the putative uromodulin band and the appearance of 2 to 4 protein bands at higher MW and a greater variability in the range of MW between 49 and 17 kDa. In felids and giraffes was quantified proteinuria reporting the first data for UTP and UPC. Moreover, by means of SDS-PAGE, were highlighted species-specific electrophoretic patterns in big felids and giraffes.