7 resultados para development coordinative disorder (DCD)

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

40.00% 40.00%

Publicador:

Resumo:

CDKL5 (cyclin-dependent kinase-like 5) deficiency disorder (CDD) is a severe X-linked neurodevelopmental disease caused by mutations in the CDKL5 gene, characterized by early-onset epileptic seizures, intellectual disability, motor and visual impairment and respiratory dysregulation. Although pharmacological treatments are used to control seizures, there is currently no cure to ameliorate symptoms for CDD. Albeit delivery of a wild-type copy of the mutated gene to cells represents the most curative approach for a monogenic disease, proof-of-concept studies highlight significant efficacy caveats for brain gene therapy. The major one regards the low efficiency of gene delivery to the CNS by viral vectors. We used a secretable Igk-TATk-CDKL5 protein to enhance the efficiency of a gene therapy for CDD. In view of the properties of the Igk-chain leader sequence, the TATk-CDKL5 protein produced by infected cells is secreted via constitutive secretory pathways. Importantly, due to the transduction property of the TATk peptide, the secreted CDKL5 protein is internalized by cells. We compared the effects of a CDKL5 gene therapy with an IgK-TATk-CDKL5 gene therapy in a Cdkl5 KO mouse model to validate whether the Igk-TATk-CDKL5 approach significantly improve the therapeutic efficacy. We found that, although AAVPHP.B_Igk-TATk-CDKL5 and AAVPHP.B_CDKL5 vectors had similar brain infection efficiency, the AAVPHP.B_Igk-TATk-CDKL5 vector led to a higher CDKL5 protein replacement and Cdkl5 KO mice treated with the AAVPHP.B_Igk-TATk-CDKL5 vector showed a behavioral and neuroanatomical improvement in comparison with Cdkl5 KO mice treated with the AAVPHP.B_CDKL5 vector.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In the central nervous system, iron in several proteins is involved in many important processes: oxygen transportation, oxidative phosphorylation, mitochondrial respiration, myelin production, the synthesis and metabolism of neurotransmitters. Abnormal iron homoeostasis can induce cellular damage through hydroxyl radical production, which can cause the oxidation, modification of lipids, proteins, carbohydrates, and DNA, lead to neurotoxicity. Moreover increased levels of iron are harmful and iron accumulations are typical hallmarks of brain ageing and several neurodegenerative disorders particularly PD. Numerous studies on post mortem tissue report on an increased amount of total iron in the substantia nigra in patients with PD also supported by large body of in vivo findings from Magnetic Resonance Imaging (MRI) studies. The importance and approaches for in vivo brain iron assessment using multiparametric MRI is increased over last years. Quantitative MRI may provide useful biomarkers for brain integrity assessment in iron-related neurodegeneration. Particularly, a prominent change in iron- sensitive T2* MRI contrast within the sub areas of the SN overlapping with nigrosome 1 were shown to be a hallmark of Parkinson's Disease with high diagnostic accuracy. Moreover, differential diagnosis between Parkinson's Disease (PD) and atypical parkinsonian syndromes (APS) remains challenging, mainly in the early phases of the disease. Advanced brain MR imaging enables to detect the pathological changes of nigral and extranigral structures at the onset of clinical manifestations and during the course of the disease. The Nigrosome-1 (N1) is a substructure of the healthy Substantia Nigra pars compacta enriched by dopaminergic neurons; their loss in Parkinson’s disease and atypical parkinsonian syndromes is related to the iron accumulation. N1 changes are supportive MR biomarkers for diagnosis of these neurodegenerative disorders, but its detection is hard with conventional sequences, also using high field (3T) scanner. Quantitative susceptibility mapping (QSM), an iron-sensitive technique, enables the direct detection of Neurodegeneration

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Rett's Syndrome (RTT) is a severe neurodevelopmental disorder, characterized by cognitive disability that appears in the first months/years of life. Recently, mutations in the X-linked cyclin-dependent kinase-like 5 (CDKL5) gene have been detected in RTT patients characterized by early-onset seizures. CDKL5 is highly expressed in the brain starting from early postnatal stages to adulthood, suggesting the importance of this kinase for proper brain maturation and function. However, the role/s of CDKL5 in brain development and the molecular mechanisms whereby CDKL5 exerts its effects are still largely unknown. In order to characterize the role of CDKL5 on brain development, we created a mice carrying a targeted conditional knockout allele of Cdkl5. A first behavioral characterization shows that Cdkl5 knockout mice recapitulate several features that mimic the clinical features described in CDKL5 patients and are a useful tool to investigate phenotypic and functional aspects of Cdkl5 loss. We used the Cdkl5 knockout mouse model to dissect the role of CDKL5 on hippocampal development and to establish the mechanism/s underlying its actions. We found that Cdkl5 knockout mice showed increased precursor cell proliferation in the hippocampal dentate gyrus. Interestingly, this region was also characterized by an increased rate of apoptotic cell death that caused a reduction in the final neuron number in spite of the proliferation increase. Moreover, loss of Cdkl5 led to decreased dendritic development of new generated granule cells. Finally, we identified the Akt/GSK3-beta signaling as a target of Cdkl5 in the regulation of neuronal precursor proliferation, survival and maturation. Overall our findings highlight a critical role of CDKL5/AKT/GSK3-beta signaling in the control of neuron proliferation, survival and differentiation and suggest that CDKL5-related alterations of these processes during brain development underlie the neurological symptoms of the CDKL5 variant of RTT.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

MYCN amplification is a genetic hallmark of the childhood tumour neuroblastoma. MYCN-MAX dimers activate the expression of genes promoting cell proliferation. Moreover, MYCN seems to transcriptionally repress cell differentiation even in absence of MAX. We adopted the Drosophila eye as model to investigate the effect of high MYC to MAX expression ratio on cells. We found that dMyc overexpression in eye cell precursors inhibits cell differentiation and induces the ectopic expression of Antennapedia (the wing Hox gene). The further increase of MYC/MAX ratio results in an eye-to-wing homeotic transformation. Notably, dMyc overexpression phenotype is suppressed by low levels of transcriptional co-repressors and MYCN associates to the promoter of Deformed (the eye Hox gene) in proximity to repressive sites. Hence, we envisage that, in presence of high MYC/MAX ratio, the “free MYC” might inhibit Deformed expression, leading in turn to the ectopic expression of Antennapedia. This suggests that MYCN might reinforce its oncogenic role by affecting the physiological homeotic program. Furthermore, poor neuroblastoma outcome associates with a high level of the MRP1 protein, encoded by the ABCC1 gene and known to promote drug efflux in cancer cells. Intriguingly, this correlation persists regardless of chemotherapy and ABCC1 overexpression enhances neuroblastoma cell motility. We found that Drosophila dMRP contributes to the adhesion between the dorsal and ventral epithelia of the wing by inhibiting the function of integrin receptors, well known regulators of cell adhesion and migration. Besides, integrins play a crucial role during synaptogenesis and ABCC1 locus is included in a copy number variable region of the human genome (16p13.11) involved in neuropsychiatric diseases. Interestingly, we found that the altered dMRP/MRP1 level affects nervous system development in Drosophila embryos. These preliminary findings point out novel ABCC1 functions possibly defining ABCC1 contribution to neuroblastoma and to the pathogenicity of 16p13.11 deletion/duplication

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Autism Spectrum Disorder (ASD) is a heterogeneous and highly heritable neurodevelopmental disorder with a complex genetic architecture, consisting of a combination of common low-risk and more penetrant rare variants. This PhD project aimed to explore the contribution of rare variants in ASD susceptibility through NGS approaches in a cohort of 106 ASD families including 125 ASD individuals. Firstly, I explored the contribution of inherited rare variants towards the ASD phenotype in a girl with a maternally inherited pathogenic NRXN1 deletion. Whole exome sequencing of the trio family identified an increased burden of deleterious variants in the proband that could modulate the CNV penetrance and determine the disease development. In the second part of the project, I investigated the role of rare variants emerging from whole genome sequencing in ASD aetiology. To properly manage and analyse sequencing data, a robust and efficient variant filtering and prioritization pipeline was developed, and by its application a stringent set of rare recessive-acting and ultra-rare variants was obtained. As a first follow-up, I performed a preliminary analysis on de novo variants, identifying the most likely deleterious variants and highlighting candidate genes for further analyses. In the third part of the project, considering the well-established involvement of calcium signalling in the molecular bases of ASD, I investigated the role of rare variants in voltage-gated calcium channels genes, that mainly regulate intracellular calcium concentration, and whose alterations have been correlated with enhanced ASD risk. Specifically, I functionally tested the effect of rare damaging variants identified in CACNA1H, showing that CACNA1H variation may be involved in ASD development by additively combining with other high risk variants. This project highlights the challenges in the analysis and interpretation of variants from NGS analysis in ASD, and underlines the importance of a comprehensive assessment of the genomic landscape of ASD individuals.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

CDKL5 (cyclin-dependent kinase-like 5) deficiency disorder (CDD) is a rare and severe neurodevelopmental disease that mostly affects girls who are heterozygous for mutations in the X-linked CDKL5 gene. The lack of CDKL5 protein expression or function leads to the appearance of numerous clinical features, including early-onset seizures, marked hypotonia, autistic features, and severe neurodevelopmental impairment. Mouse models of CDD, Cdkl5 KO mice, exhibit several behavioral phenotypes that mimic CDD features, such as impaired learning and memory, social interaction, and motor coordination. CDD symptomatology, along with the high CDKL5 expression levels in the brain, underscores the critical role that CDKL5 plays in proper brain development and function. Nevertheless, the improvement of the clinical overview of CDD in the past few years has defined a more detailed phenotypic spectrum; this includes very common alterations in peripheral organ and tissue function, such as gastrointestinal problems, irregular breathing, hypotonia, and scoliosis, suggesting that CDKL5 deficiency compromises not only CNS function but also that of other organs/tissues. Here we report, for the first time, that a mouse model of CDD, the heterozygous Cdkl5 KO (Cdkl5 +/-) female mouse, exhibits cardiac functional and structural abnormalities. The mice also showed QTc prolongation and increased heart rate. These changes correlate with a marked decrease in parasympathetic activity to the heart and in the expression of the Scn5a and Hcn4 voltage-gated channels. Moreover, the Cdkl5 +/- heart shows typical signs of heart aging, including increased fibrosis, mitochondrial dysfunctions, and increased ROS production. Overall, our study not only contributes to the understanding of the role of CDKL5 in heart structure/function but also documents a novel preclinical phenotype for future therapeutic investigation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cyclin-dependent kinase-like 5 (CDKL5) deficiency disorder (CDD), a rare neurodevelopmental disease caused by mutations in the X-linked CDKL5 gene, is characterized by early-onset epilepsy, intellectual disability, and autistic features. To date, little is known about the etiology of CDD and no therapies are available. When overactivated in response to neuronal damage and genetic or environmental factors, microglia – the brain macrophages – cause damage to neighboring neurons by producing neurotoxic factors and pro-inflammatory molecules. Importantly, overactivated microglia have been described in several neurodegenerative and neurodevelopmental disorders, suggesting that active neuroinflammation may account for the compromised neuronal survival and/or brain development observed in these pathologies. Recent evidence shows a subclinical chronic inflammatory status in plasma from CDD patients. However, it is unknown whether a similar inflammatory status is present in the brain of CDD patients and, if so, whether it plays a causative or exacerbating role in the pathophysiology of CDD. Here, we show evidence of a chronic microglia overactivation status in the brain of Cdkl5 KO mice, characterized by alterations in microglial cell number/morphology and increased pro-inflammatory gene expression. We found that the neuroinflammatory process is already present in the postnatal period in Cdkl5 KO mice and worsens during aging. Remarkably, by restoring microglia alterations, treatment with luteolin, a natural anti-inflammatory flavonoid, promotes neuronal survival in the brain of Cdkl5 KO mice since it counteracts hippocampal neuron cell death and protects neurons from NMDA-induced excitotoxic damage. In addition, through the restoration of microglia alterations, luteolin treatment also increases hippocampal neurogenesis and restores dendritic spine maturation and dendritic arborization of hippocampal and cortical pyramidal neurons in Cdkl5 KO mice, leading to improved behavioral performance. These findings highlight new insights into the CDD pathophysiology and provide the first evidence that therapeutic approaches aimed at counteracting neuroinflammation could be beneficial in CDD.