2 resultados para detrital zircon
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
The Thrace Basin is the largest and thickest Tertiary sedimentary basin of the eastern Balkans region and constitutes an important hydrocarbon province. It is located between the Rhodope-Strandja Massif to the north and west, the Marmara Sea and Biga Peninsula to the south, and the Black Sea to the est. It consists of a complex system of depocenters and uplifts with very articulate paleotopography indicated by abrupt lateral facies variations. Its southeastern margin is widely deformed by the Ganos Fault, a segment of the North Anatolian strike-slip fault system . Most of the Thrace Basin fill ranges from the Eocene to the Late Oligocene. Maximum total thickness, including the Neogene-Quaternary succession, reaches 9.000 meters in a few narrow depocenters. This sedimentary succession consists mainly of basin plain turbiditic deposits with a significant volcaniclastic component which evolves upwards to shelf deposits and continental facies, with deltaic bodies prograding towards the basin center in the Oligocene. This work deals with the provenance of Eocene-Oligocene clastic sediments of the southern and western part of Thrace Basin in Turkey and Greece. Sandstone compositional data (78 gross composition analyses and 40 heavy minerals analyses) were used to understand the change in detrital modes which reflects the provenance and geodinamic evolution of the basin. Samples were collected at six localities, which are from west to est: Gökçeada, Gallipoli and South-Ganos (south of Ganos Fault), Alexandroupolis, Korudağ and North-Ganos (north of Ganos Fault). Petrologic (framework composition and heavy-mineral analyses) and stratigraphic-sedimentologic data, (analysis of sedimentologic facies associations along representative stratigraphic sections, paleocurrents) allowed discrimination of six petrofacies; for each petrofacies the sediment dispersal system was delineated. The Thrace Basin fill is made mainly of lithic arkoses and arkosic litharenites with variable amount of low-grade metamorphic lithics (also ophiolitic), neovolcanic lithics, and carbonate grains (mainly extrabasinal). Picotite is the most widespread heavy mineral in all petrofacies. Petrological data on analyzed successions show a complex sediment dispersal pattern and evolution of the basin, indicating one principal detrital input from a source area located to the south, along both the İzmir-Ankara and Intra-Pontide suture lines, and a possible secondary source area, represented by the Rhodope Massif to the west. A significant portion of the Thrace Basin sediments in the study area were derived from ophiolitic source rocks and from their oceanic cover, whereas epimetamorphic detrital components came from a low-grade crystalline basement. An important penecontemporaneous volcanic component is widespread in late Eocene-Oligocene times, indicating widespread post-collisional (collapse?) volcanism following the closure of the Vardar ocean. Large-scale sediment mass wasting from south to north along the southern margin of the Thrace Basin is indicated (i) in late Eocene time by large olistoliths of ophiolites and penecontemporaneous carbonates, and (ii) in the mid-Oligocene by large volcaniclastic olistoliths. The late Oligocene paleogeographic scenario was characterized by large deltaic bodies prograding northward (Osmancik Formation). This clearly indicates that the southern margin of the basin acted as a major sediment source area throughout its Eocene-Oligocene history. Another major sediment source area is represented by the Rhodope Massif, in particolar the Circum-Rhodopic belt, especially for plutonic and metamorphic rocks. Considering preexisting data on the petrologic composition of Thrace Basin, silicilastic sediments in Greece and Bulgaria (Caracciolo, 2009), a Rhodopian provenance could be considered mostly for areas of the Thrace Basin outside our study area, particularly in the northern-central portions of the basin. In summary, the most important source area for the sediment of Thrace Basin in the study area was represented by the exhumed subduction-accretion complex along the southern margin of the basin (Biga Peninsula and western-central Marmara Sea region). Most measured paleocurrent indicators show an eastward paleoflow but this is most likely the result of gravity flow deflection. This is possible considered a strong control due to the east-west-trending synsedimentary transcurrent faults which cuts the Thrace Basin, generating a series of depocenters and uplifts which deeply influenced sediment dispersal and the areal distribution of paleoenvironments. The Thrace Basin was long interpreted as a forearc basin between a magmatic arc to the north and a subduction-accretion complex to the south, developed in a context of northward subduction. This interpretation was challenged by more recent data emphasizing the lack of a coeval magmatic arc in the north and the interpretation of the chaotic deposit which outcrop south of Ganos Fault as olistoliths and large submarine slumps, derived from the erosion and sedimentary reworking of an older mélange unit located to the south (not as tectonic mélange formed in an accretionary prism). The present study corroborates instead the hypothesis of a post-collisional origin of the Thrace Basin, due to a phase of orogenic collapse, which generated a series of mid-Eocene depocenters all along the İzmir-Ankara suture (following closure of the Vardar-İzmir-Ankara ocean and the ensuing collision); then the slab roll-back of the remnant Pindos ocean played an important role in enhancing subsidence and creating additional accommodation space for sediment deposition.
Resumo:
The application of two low-temperature thermochronometers [fission-track analysis and (U-Th)/He analyses, both on apatite] to various tectonostratigraphic units of the Menderes and Alanya Massifs of Turkey has provided significant new constraints to the understanding of their structural evolution. The Menderes Massif of western Anatolia is one of the largest metamorphic core complexes on Earth. The integration of the geochronometric dataset presented in this dissertation with preexisting ones from the literature delineates three groups of samples within the Menderes Massif. In the northern and southern region the massif experienced a Late Oligocene-Early Miocene tectonic denudation and surface uplift; whereas data from the central region are younger, with most ages ranging between the Middle-Late Miocene. The results of this study are consistent with the interpretation for a symmetric exhumation of the Menderes Massif. The Alanya Massif of SW Anatolia presents a typical nappe pile consisting of thrust sheets with contrasting metamorphic histories. Petrological and geochronological data clearly indicate that the tectonometamorphic evolution Alanya started from Late Cretaceous with the northward subduction of an ‘Alanya ocean’ under the Tauride plate. As an effect of the closure of the İzmir–Ankara–Erzincan ocean, northward backthrusting during the Paleocene-Early Eocene created the present stacking order. Apatite fission-track ages from this study range from 31.8 to 26.8 Ma (Late Rupelian-Early Chattian) and point to a previously unrecognized mid-Oligocene cooling/exhumation episode. (U-Th)/He analysis on zircon crystals obtained from the island of Cyprus evidentiate that the Late Cretaceous trondhjemites of the Troodos Massif not recorded a significant cooling event. Instead results for the Late Triassic turbiditic sandstones of the Vlambouros Formation show that the Mamonia mélange was never buried enough to reach the closure temperature of the ZHe radiometric system (ca. 200°C), thus retaining the Paleozoic signature of a previous sedimentary cycle.