7 resultados para degradation processes

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The cytotoxicity of dental composites has been attributed to the release of residual monomers from polymerized adhesive systems due to degradation processes or the incomplete polymerization of materials. 2-Hydroxyethyl methacrylate (HEMA) is one of the major components released from dental adhesives. Cytotoxic effects due to high concentrations of HEMA have already been investigated, but the influence of minor toxic concentrations for long-term exposition on specific proteins such as type I collagen and tenascin has not been studied in depth. The objective of this project was to study the effect of minor toxic concentrations of HEMA on human gingival fibroblasts (HGFs) and human pulp fibroblasts (HPFs), investigating modification in cell morphology, cell viability, and the influence on type I collagen and tenascin proteins. Different concentrations of the resin monomer and different times of exposition were tested on both cell lines. The cell vitality was determined by MTT assay, and high-resolution scanning electron microscopy analysis was performed to evaluate differences in cell morphology before and after treatment. To evaluate the variability in the expression and synthesis of procollagen α1 type I and tenascin proteins on HGFs and HPFs treated with HEMA at different concentrations immunofluorescence, RT-PCR and western blot analysis, were carried out. The treatments on HGFs with 3mmol/L HEMA, showed a strong reduction of procollagen α1 type I protein at 72h and 96h, demonstrating that HEMA interferes both with the synthesis of the procollagen α1 type I protein and its mRNA expression. The results obtained on HPFs treated with different concentrations of HEMA ranging from 0,5mmol/L to 3mmol/L and for different exposition times showed a strong reduction in cell viability in specimens treated for 96h and 168h, while immunofluorescence and western blotting analysis demonstrated a reduction of procollagen α1 type I and an overexpression of tenascin protein. In conclusion, our results showed that the concentrations of HEMA we tested, effect the normal cell production and activity, such as the synthesis of some dental extracellular matrix proteins.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The durability of stone building materials is an issue of utmost importance in the field of monument conservation. In order to be able to preserve our built cultural heritage, the thorough knowledge of its constituent materials and the understanding of the processes that affect them are indispensable. The main objective of this research was to evaluate the durability of a special stone type, the crystalline stones, in correlation with their intrinsic characteristics, the petrophysical properties. The crystalline stones are differentiated from the cemented stones on the basis of textural features. Their most important specific property is the usually low, fissure-like porosity. Stone types of significant monumental importance, like the marble or granite belong to this group. The selected materials for this investigation, indeed, are a marble (Macael marble, Spain) and a granite (Silvestre Vilachán granite, Spain). In addition, an andesite (Szob andesite, Hungary) also of significant monumental importance was selected. This way a wide range of crystalline rocks is covered in terms of petrogenesis: stones of metamorphic, magmatic and volcanic origin, which can be of importance in terms of mineralogical, petrological or physical characteristics. After the detailed characterization of the petrophysical properties of the selected stones, their durability was assessed by means of artificial ageing. The applied ageing tests were: the salt crystallization, the frost resistance in pure water and in the presence of soluble salts, the salt mist and the action of SO2 in the presence of humidity. The research aimed at the understanding of the mechanisms of each weathering process and at finding the petrophysical properties most decisive in the degradation of these materials. Among the several weathering mechanisms, the most important ones were found to be the physical stress due to crystallization pressure of both salt and ice, the thermal fatigue due to cyclic temperature changes and the chemical reactions (mostly the acidic attack) between the mineral phases and the external fluids. The properties that fundamentally control the degradation processes, and thus the durability of stones were found to be: the mineralogical and chemical composition; the hydraulic properties especially the water uptake, the permeability and the drying; the void space structure, especially the void size and aperture size distribution and the connectivity of the porous space; and the thermal and mechanical properties. Because of the complexity of the processes and the high number of determining properties, no mechanisms or characteristics could be identified as typical for crystalline stones. The durability or alterability of each stone type must be assessed according to its properties and not according to the textural or petrophysical classification they belong to. Finally, a critical review of standardized methods is presented, based on which an attempt was made for recommendations of the most adequate methodology for the characterization and durability assessment of crystalline stones.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Lo studio dei processi biogeochimici che avvengono all’interfaccia acqua-sedimento riveste grande importanza per comprendere quali fattori ambientali siano responsabili di un eventuale modifica nel bilancio del carbonio organico e di altri elementi maggiori o minori e può` fornire un' indicazione su quali siano le aree più sensibili a tali processi. In questo studio sono stati analizzati i meccanismi che guidano la mineralizzazione della sostanza organica in aree caratterizzate da differenti condizioni idrodinamiche, batimetriche e trofiche nel Mediterraneo centrale. In particolare sono state prelevate carote di sedimento e analizzate le acque interstiziali in siti localizzati nell'Adriatico centro-meridionale, caratterizzati da basse profondità, alti tassi di sedimentazione e elevati apporti di sostanza organica, e in siti localizzati nello Ionio centro-settentrionale, caratterizzati da profondità crescenti, minori tassi di sedimentazione e ridotti apporti fluviali. L'analisi dei processi di degradazione della sostanza organica evidenzia differenze regionali tra il bacino adriatico e quello ionico: processi di mineralizzazione ossica e subossica appaiono intensi nei sedimenti adriatici, diversamente il bacino ionico appare caratterizzato principalmente da processi di degradazione ossica della sostanza organica. Inoltre, relativamente ai flussi bentici di Carbonio Inorganico Disciolto (DIC) flussi inversi sono stati registrati nei due bacini: i sedimenti adriatici si comportano come sourse di DIC, mentre i sedimenti Ionici si comportano come dei sink di DIC suggerendo una possibile precipitazione di carbonati nel bacino ionico.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The last half-century has seen a continuing population and consumption growth, increasing the competition for land, water and energy. The solution can be found in the new sustainability theories, such as the industrial symbiosis and the zero waste objective. Reducing, reusing and recycling are challenges that the whole world have to consider. This is especially important for organic waste, whose reusing gives interesting results in terms of energy release. Before reusing, organic waste needs a deeper characterization. The non-destructive and non-invasive features of both Nuclear Magnetic Resonance (NMR) relaxometry and imaging (MRI) make them optimal candidates to reach such characterization. In this research, NMR techniques demonstrated to be innovative technologies, but an important work on the hardware and software of the NMR LAGIRN laboratory was initially done, creating new experimental procedures to analyse organic waste samples. The first results came from soil-organic matter interactions. Remediated soils properties were described in function of the organic carbon content, proving the importance of limiting the addition of further organic matter to not inhibit soil processes as nutrients transport. Moreover NMR relaxation times and the signal amplitude of a compost sample, over time, showed that the organic matter degradation of compost is a complex process that involves a number of degradation kinetics, as a function of the mix of waste. Local degradation processes were studied with enhanced quantitative relaxation technique that combines NMR and MRI. The development of this research has finally led to the study of waste before it becomes waste. Since a lot of food is lost when it is still edible, new NMR experiments studied the efficiency of conservation and valorisation processes: apple dehydration, meat preservation and bio-oils production. All these results proved the readiness of NMR for quality controls on a huge kind of organic residues and waste.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Cultural heritage is constituted by complex and heterogenous materials, such as paintings but also ancient remains. However, all ancient materials are exposed to external environment and their interaction produces different changes due to chemical, physical and biological phenomena. The organic fraction, especially the proteinaceous one, has a crucial role in all these materials: in archaeology proteins reveal human habits, in artworks they disclose technics and help for a correct restoration. For these reasons the development of methods that allow the preservation of the sample as much as possible and a deeper knowledge of the deterioration processes is fundamental. The research activities presented in this PhD thesis have been focused on the development of new immunochemical and spectroscopic approaches in order to detect and identify organic substances in artistic and archaeological samples. Organic components could be present in different cultural heritage materials as constituent element (e.g., binders in paintings, collagen in bones) and their knowledge is fundamental for a complete understanding of past life, degradation processes and appropriate restauration approaches. The combination of immunological approach with a chemiluminescence detection and Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry allowed a sensitive and selective localization of collagen and elements in ancient bones and teeth. Near-infrared spectrometer and hyper spectral imaging have been applied in combination with chemometric data analysis as non-destructive methods for bones prescreening for the localization of collagen. Moreover, an investigation of amino acids in enamel has been proposed, in order to clarify teeth biomolecules survival overtime through the optimization and application of High-Performance Liquid Chromatography on modern and ancient enamel powder. New portable biosensors were developed for ovalbumin identification in paintings, thanks to the combination between biocompatible Gellan gel and electro-immunochemical sensors, to extract and identify painting binders with the contact only between gel and painting and between gel and electrodes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study investigates the changes in soil fertility due to the different aggregate breakdown mechanisms and it analyses their relationships in different soil-plant systems, using physical aggregates behavior and organic matter (OM) changes as indicators. Three case studies were investigated: i) an organic agricultural soil, where a combined method, aimed to couple aggregate stability to nutrients loss, were tested; ii) a soil biosequence, where OM chemical characterisation and fractionation of aggregates on the basis of their physical behaviour were coupled and iii) a soils sequence in different phytoclimatic conditions, where isotopic C signature of separated aggregates was analysed. In agricultural soils the proposed combined method allows to identify that the severity of aggregate breakdown affected the quantity of nutrients lost more than nutrients availability, and that P, K and Mg were the most susceptible elements to water abrasion, while C and N were mainly susceptible to wetting. In the studied Chestnut-Douglas fir biosequence, OM chemical properties affected the relative importance of OM direct and indirect mechanisms (i.e., organic and organic-metallic cements, respectively) involved in aggregate stability and nutrient losses: under Douglas fir, high presence of carboxylate groups enhanced OM-metal interactions and stabilised aggregates; whereas under Chestnut, OM directly acted and fresh, more C-rich OM was preserved. OM direct mechanism seemed to be more efficient in C preservation in aggregates. The 13C natural abundance approach showed that, according to phytoclimatic conditions, stable macroaggregates can form both around partially decomposed OM and by organic-mineral interactions. In topsoils, aggregate resistance enhanced 13C-rich OM preservation, but in subsoils C preservation was due to other mechanisms, likely OM-mineral interactions. The proposed combined approach seems to be useful in the understanding of C and nutrients fate relates to water stresses, and in future research it could provide new insights into the complexity of soil biophysical processes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The investigation of phylogenetic diversity and functionality of complex microbial communities in relation to changes in the environmental conditions represents a major challenge of microbial ecology research. Nowadays, particular attention is paid to microbial communities occurring at environmental sites contaminated by recalcitrant and toxic organic compounds. Extended research has evidenced that such communities evolve some metabolic abilities leading to the partial degradation or complete mineralization of the contaminants. Determination of such biodegradation potential can be the starting point for the development of cost effective biotechnological processes for the bioremediation of contaminated matrices. This work showed how metagenomics-based microbial ecology investigations supported the choice or the development of three different bioremediation strategies. First, PCR-DGGE and PCR-cloning approaches served the molecular characterization of microbial communities enriched through sequential development stages of an aerobic cometabolic process for the treatment of groundwater contaminated by chlorinated aliphatic hydrocarbons inside an immobilized-biomass packed bed bioreactor (PBR). In this case the analyses revealed homogeneous growth and structure of immobilized communities throughout the PBR and the occurrence of dominant microbial phylotypes of the genera Rhodococcus, Comamonas and Acidovorax, which probably drive the biodegradation process. The same molecular approaches were employed to characterize sludge microbial communities selected and enriched during the treatment of municipal wastewater coupled with the production of polyhydroxyalkanoates (PHA). Known PHA-accumulating microorganisms identified were affiliated with the genera Zooglea, Acidovorax and Hydrogenophaga. Finally, the molecular investigation concerned communities of polycyclic aromatic hydrocarbon (PAH) contaminated soil subjected to rhizoremediation with willow roots or fertilization-based treatments. The metabolic ability to biodegrade naphthalene, as a representative model for PAH, was assessed by means of stable isotope probing in combination with high-throughput sequencing analysis. The phylogenetic diversity of microbial populations able to derive carbon from naphthalene was evaluated as a function of the type of treatment.