14 resultados para data integration

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In recent years, the use of Reverse Engineering systems has got a considerable interest for a wide number of applications. Therefore, many research activities are focused on accuracy and precision of the acquired data and post processing phase improvements. In this context, this PhD Thesis deals with the definition of two novel methods for data post processing and data fusion between physical and geometrical information. In particular a technique has been defined for error definition in 3D points’ coordinates acquired by an optical triangulation laser scanner, with the aim to identify adequate correction arrays to apply under different acquisition parameters and operative conditions. Systematic error in data acquired is thus compensated, in order to increase accuracy value. Moreover, the definition of a 3D thermogram is examined. Object geometrical information and its thermal properties, coming from a thermographic inspection, are combined in order to have a temperature value for each recognizable point. Data acquired by an optical triangulation laser scanner are also used to normalize temperature values and make thermal data independent from thermal-camera point of view.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In recent years, IoT technology has radically transformed many crucial industrial and service sectors such as healthcare. The multi-facets heterogeneity of the devices and the collected information provides important opportunities to develop innovative systems and services. However, the ubiquitous presence of data silos and the poor semantic interoperability in the IoT landscape constitute a significant obstacle in the pursuit of this goal. Moreover, achieving actionable knowledge from the collected data requires IoT information sources to be analysed using appropriate artificial intelligence techniques such as automated reasoning. In this thesis work, Semantic Web technologies have been investigated as an approach to address both the data integration and reasoning aspect in modern IoT systems. In particular, the contributions presented in this thesis are the following: (1) the IoT Fitness Ontology, an OWL ontology that has been developed in order to overcome the issue of data silos and enable semantic interoperability in the IoT fitness domain; (2) a Linked Open Data web portal for collecting and sharing IoT health datasets with the research community; (3) a novel methodology for embedding knowledge in rule-defined IoT smart home scenarios; and (4) a knowledge-based IoT home automation system that supports a seamless integration of heterogeneous devices and data sources.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Several countries have acquired, over the past decades, large amounts of area covering Airborne Electromagnetic data. Contribution of airborne geophysics has dramatically increased for both groundwater resource mapping and management proving how those systems are appropriate for large-scale and efficient groundwater surveying. We start with processing and inversion of two AEM dataset from two different systems collected over the Spiritwood Valley Aquifer area, Manitoba, Canada respectively, the AeroTEM III (commissioned by the Geological Survey of Canada in 2010) and the “Full waveform VTEM” dataset, collected and tested over the same survey area, during the fall 2011. We demonstrate that in the presence of multiple datasets, either AEM and ground data, due processing, inversion, post-processing, data integration and data calibration is the proper approach capable of providing reliable and consistent resistivity models. Our approach can be of interest to many end users, ranging from Geological Surveys, Universities to Private Companies, which are often proprietary of large geophysical databases to be interpreted for geological and\or hydrogeological purposes. In this study we deeply investigate the role of integration of several complimentary types of geophysical data collected over the same survey area. We show that data integration can improve inversions, reduce ambiguity and deliver high resolution results. We further attempt to use the final, most reliable output resistivity models as a solid basis for building a knowledge-driven 3D geological voxel-based model. A voxel approach allows a quantitative understanding of the hydrogeological setting of the area, and it can be further used to estimate the aquifers volumes (i.e. potential amount of groundwater resources) as well as hydrogeological flow model prediction. In addition, we investigated the impact of an AEM dataset towards hydrogeological mapping and 3D hydrogeological modeling, comparing it to having only a ground based TEM dataset and\or to having only boreholes data.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In medicine, innovation depends on a better knowledge of the human body mechanism, which represents a complex system of multi-scale constituents. Unraveling the complexity underneath diseases proves to be challenging. A deep understanding of the inner workings comes with dealing with many heterogeneous information. Exploring the molecular status and the organization of genes, proteins, metabolites provides insights on what is driving a disease, from aggressiveness to curability. Molecular constituents, however, are only the building blocks of the human body and cannot currently tell the whole story of diseases. This is why nowadays attention is growing towards the contemporary exploitation of multi-scale information. Holistic methods are then drawing interest to address the problem of integrating heterogeneous data. The heterogeneity may derive from the diversity across data types and from the diversity within diseases. Here, four studies conducted data integration using customly designed workflows that implement novel methods and views to tackle the heterogeneous characterization of diseases. The first study devoted to determine shared gene regulatory signatures for onco-hematology and it showed partial co-regulation across blood-related diseases. The second study focused on Acute Myeloid Leukemia and refined the unsupervised integration of genomic alterations, which turned out to better resemble clinical practice. In the third study, network integration for artherosclerosis demonstrated, as a proof of concept, the impact of network intelligibility when it comes to model heterogeneous data, which showed to accelerate the identification of new potential pharmaceutical targets. Lastly, the fourth study introduced a new method to integrate multiple data types in a unique latent heterogeneous-representation that facilitated the selection of important data types to predict the tumour stage of invasive ductal carcinoma. The results of these four studies laid the groundwork to ease the detection of new biomarkers ultimately beneficial to medical practice and to the ever-growing field of Personalized Medicine.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recently, a rising interest in political and economic integration/disintegration issues has been developed in the political economy field. This growing strand of literature partly draws on traditional issues of fiscal federalism and optimum public good provision and focuses on a trade-off between the benefits of centralization, arising from economies of scale or externalities, and the costs of harmonizing policies as a consequence of the increased heterogeneity of individual preferences in an international union or in a country composed of at least two regions. This thesis stems from this strand of literature and aims to shed some light on two highly relevant aspects of the political economy of European integration. The first concerns the role of public opinion in the integration process; more precisely, how economic benefits and costs of integration shape citizens' support for European Union (EU) membership. The second is the allocation of policy competences among different levels of government: European, national and regional. Chapter 1 introduces the topics developed in this thesis by reviewing the main recent theoretical developments in the political economy analysis of integration processes. It is structured as follows. First, it briefly surveys a few relevant articles on economic theories of integration and disintegration processes (Alesina and Spolaore 1997, Bolton and Roland 1997, Alesina et al. 2000, Casella and Feinstein 2002) and discusses their relevance for the study of the impact of economic benefits and costs on public opinion attitude towards the EU. Subsequently, it explores the links existing between such political economy literature and theories of fiscal federalism, especially with regard to normative considerations concerning the optimal allocation of competences in a union. Chapter 2 firstly proposes a model of citizens’ support for membership of international unions, with explicit reference to the EU; subsequently it tests the model on a panel of EU countries. What are the factors that influence public opinion support for the European Union (EU)? In international relations theory, the idea that citizens' support for the EU depends on material benefits deriving from integration, i.e. whether European integration makes individuals economically better off (utilitarian support), has been common since the 1970s, but has never been the subject of a formal treatment (Hix 2005). A small number of studies in the 1990s have investigated econometrically the link between national economic performance and mass support for European integration (Eichenberg and Dalton 1993; Anderson and Kalthenthaler 1996), but only making informal assumptions. The main aim of Chapter 2 is thus to propose and test our model with a view to providing a more complete and theoretically grounded picture of public support for the EU. Following theories of utilitarian support, we assume that citizens are in favour of membership if they receive economic benefits from it. To develop this idea, we propose a simple political economic model drawing on the recent economic literature on integration and disintegration processes. The basic element is the existence of a trade-off between the benefits of centralisation and the costs of harmonising policies in presence of heterogeneous preferences among countries. The approach we follow is that of the recent literature on the political economy of international unions and the unification or break-up of nations (Bolton and Roland 1997, Alesina and Wacziarg 1999, Alesina et al. 2001, 2005a, to mention only the relevant). The general perspective is that unification provides returns to scale in the provision of public goods, but reduces each member state’s ability to determine its most favoured bundle of public goods. In the simple model presented in Chapter 2, support for membership of the union is increasing in the union’s average income and in the loss of efficiency stemming from being outside the union, and decreasing in a country’s average income, while increasing heterogeneity of preferences among countries points to a reduced scope of the union. Afterwards we empirically test the model with data on the EU; more precisely, we perform an econometric analysis employing a panel of member countries over time. The second part of Chapter 2 thus tries to answer the following question: does public opinion support for the EU really depend on economic factors? The findings are broadly consistent with our theoretical expectations: the conditions of the national economy, differences in income among member states and heterogeneity of preferences shape citizens’ attitude towards their country’s membership of the EU. Consequently, this analysis offers some interesting policy implications for the present debate about ratification of the European Constitution and, more generally, about how the EU could act in order to gain more support from the European public. Citizens in many member states are called to express their opinion in national referenda, which may well end up in rejection of the Constitution, as recently happened in France and the Netherlands, triggering a European-wide political crisis. These events show that nowadays understanding public attitude towards the EU is not only of academic interest, but has a strong relevance for policy-making too. Chapter 3 empirically investigates the link between European integration and regional autonomy in Italy. Over the last few decades, the double tendency towards supranationalism and regional autonomy, which has characterised some European States, has taken a very interesting form in this country, because Italy, besides being one of the founding members of the EU, also implemented a process of decentralisation during the 1970s, further strengthened by a constitutional reform in 2001. Moreover, the issue of the allocation of competences among the EU, the Member States and the regions is now especially topical. The process leading to the drafting of European Constitution (even if then it has not come into force) has attracted much attention from a constitutional political economy perspective both on a normative and positive point of view (Breuss and Eller 2004, Mueller 2005). The Italian parliament has recently passed a new thorough constitutional reform, still to be approved by citizens in a referendum, which includes, among other things, the so called “devolution”, i.e. granting the regions exclusive competence in public health care, education and local police. Following and extending the methodology proposed in a recent influential article by Alesina et al. (2005b), which only concentrated on the EU activity (treaties, legislation, and European Court of Justice’s rulings), we develop a set of quantitative indicators measuring the intensity of the legislative activity of the Italian State, the EU and the Italian regions from 1973 to 2005 in a large number of policy categories. By doing so, we seek to answer the following broad questions. Are European and regional legislations substitutes for state laws? To what extent are the competences attributed by the European treaties or the Italian Constitution actually exerted in the various policy areas? Is their exertion consistent with the normative recommendations from the economic literature about their optimum allocation among different levels of government? The main results show that, first, there seems to be a certain substitutability between EU and national legislations (even if not a very strong one), but not between regional and national ones. Second, the EU concentrates its legislative activity mainly in international trade and agriculture, whilst social policy is where the regions and the State (which is also the main actor in foreign policy) are more active. Third, at least two levels of government (in some cases all of them) are significantly involved in the legislative activity in many sectors, even where the rationale for that is, at best, very questionable, indicating that they actually share a larger number of policy tasks than that suggested by the economic theory. It appears therefore that an excessive number of competences are actually shared among different levels of government. From an economic perspective, it may well be recommended that some competences be shared, but only when the balance between scale or spillover effects and heterogeneity of preferences suggests so. When, on the contrary, too many levels of government are involved in a certain policy area, the distinction between their different responsibilities easily becomes unnecessarily blurred. This may not only leads to a slower and inefficient policy-making process, but also risks to make it too complicate to understand for citizens, who, on the contrary, should be able to know who is really responsible for a certain policy when they vote in national,local or European elections or in referenda on national or European constitutional issues.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present a non linear technique to invert strong motion records with the aim of obtaining the final slip and rupture velocity distributions on the fault plane. In this thesis, the ground motion simulation is obtained evaluating the representation integral in the frequency. The Green’s tractions are computed using the discrete wave-number integration technique that provides the full wave-field in a 1D layered propagation medium. The representation integral is computed through a finite elements technique, based on a Delaunay’s triangulation on the fault plane. The rupture velocity is defined on a coarser regular grid and rupture times are computed by integration of the eikonal equation. For the inversion, the slip distribution is parameterized by 2D overlapping Gaussian functions, which can easily relate the spectrum of the possible solutions with the minimum resolvable wavelength, related to source-station distribution and data processing. The inverse problem is solved by a two-step procedure aimed at separating the computation of the rupture velocity from the evaluation of the slip distribution, the latter being a linear problem, when the rupture velocity is fixed. The non-linear step is solved by optimization of an L2 misfit function between synthetic and real seismograms, and solution is searched by the use of the Neighbourhood Algorithm. The conjugate gradient method is used to solve the linear step instead. The developed methodology has been applied to the M7.2, Iwate Nairiku Miyagi, Japan, earthquake. The estimated magnitude seismic moment is 2.6326 dyne∙cm that corresponds to a moment magnitude MW 6.9 while the mean the rupture velocity is 2.0 km/s. A large slip patch extends from the hypocenter to the southern shallow part of the fault plane. A second relatively large slip patch is found in the northern shallow part. Finally, we gave a quantitative estimation of errors associates with the parameters.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

MFA and LCA methodologies were applied to analyse the anthropogenic aluminium cycle in Italy with focus on historical evolution of stocks and flows of the metal, embodied GHG emissions, and potentials from recycling to provide key features to Italy for prioritizing industrial policy toward low-carbon technologies and materials. Historical trend series were collected from 1947 to 2009 and balanced with data from production, manufacturing and waste management of aluminium-containing products, using a ‘top-down’ approach to quantify the contemporary in-use stock of the metal, and helping to identify ‘applications where aluminium is not yet being recycled to its full potential and to identify present and future recycling flows’. The MFA results were used as a basis for the LCA aimed at evaluating the carbon footprint evolution, from primary and electrical energy, the smelting process and the transportation, embodied in the Italian aluminium. A discussion about how the main factors, according to the Kaya Identity equation, they did influence the Italian GHG emissions pattern over time, and which are the levers to mitigate it, it has been also reported. The contemporary anthropogenic reservoirs of aluminium was estimated at about 320 kg per capita, mainly embedded within the transportation and building and construction sectors. Cumulative in-use stock represents approximately 11 years of supply at current usage rates (about 20 Mt versus 1.7 Mt/year), and it would imply a potential of about 160 Mt of CO2eq emissions savings. A discussion of criticality related to aluminium waste recovery from the transportation and the containers and packaging sectors was also included in the study, providing an example for how MFA and LCA may support decision-making at sectorial or regional level. The research constitutes the first attempt of an integrated approach between MFA and LCA applied to the aluminium cycle in Italy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Beside the traditional paradigm of "centralized" power generation, a new concept of "distributed" generation is emerging, in which the same user becomes pro-sumer. During this transition, the Energy Storage Systems (ESS) can provide multiple services and features, which are necessary for a higher quality of the electrical system and for the optimization of non-programmable Renewable Energy Source (RES) power plants. A ESS prototype was designed, developed and integrated into a renewable energy production system in order to create a smart microgrid and consequently manage in an efficient and intelligent way the energy flow as a function of the power demand. The produced energy can be introduced into the grid, supplied to the load directly or stored in batteries. The microgrid is composed by a 7 kW wind turbine (WT) and a 17 kW photovoltaic (PV) plant are part of. The load is given by electrical utilities of a cheese factory. The ESS is composed by the following two subsystems, a Battery Energy Storage System (BESS) and a Power Control System (PCS). With the aim of sizing the ESS, a Remote Grid Analyzer (RGA) was designed, realized and connected to the wind turbine, photovoltaic plant and the switchboard. Afterwards, different electrochemical storage technologies were studied, and taking into account the load requirements present in the cheese factory, the most suitable solution was identified in the high temperatures salt Na-NiCl2 battery technology. The data acquisition from all electrical utilities provided a detailed load analysis, indicating the optimal storage size equal to a 30 kW battery system. Moreover a container was designed and realized to locate the BESS and PCS, meeting all the requirements and safety conditions. Furthermore, a smart control system was implemented in order to handle the different applications of the ESS, such as peak shaving or load levelling.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The research activities involved the application of the Geomatic techniques in the Cultural Heritage field, following the development of two themes: Firstly, the application of high precision surveying techniques for the restoration and interpretation of relevant monuments and archaeological finds. The main case regards the activities for the generation of a high-fidelity 3D model of the Fountain of Neptune in Bologna. In this work, aimed to the restoration of the manufacture, both the geometrical and radiometrical aspects were crucial. The final product was the base of a 3D information system representing a shared tool where the different figures involved in the restoration activities shared their contribution in a multidisciplinary approach. Secondly, the arrangement of 3D databases for a Building Information Modeling (BIM) approach, in a process which involves the generation and management of digital representations of physical and functional characteristics of historical buildings, towards a so-called Historical Building Information Model (HBIM). A first application was conducted for the San Michele in Acerboli’s church in Santarcangelo di Romagna. The survey was performed by the integration of the classical and modern Geomatic techniques and the point cloud representing the church was used for the development of a HBIM model, where the relevant information connected to the building could be stored and georeferenced. A second application regards the domus of Obellio Firmo in Pompeii, surveyed by the integration of the classical and modern Geomatic techniques. An historical analysis permitted the definitions of phases and the organization of a database of materials and constructive elements. The goal is the obtaining of a federate model able to manage the different aspects: documental, analytic and reconstructive ones.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this thesis we discuss in what ways computational logic (CL) and data science (DS) can jointly contribute to the management of knowledge within the scope of modern and future artificial intelligence (AI), and how technically-sound software technologies can be realised along the path. An agent-oriented mindset permeates the whole discussion, by stressing pivotal role of autonomous agents in exploiting both means to reach higher degrees of intelligence. Accordingly, the goals of this thesis are manifold. First, we elicit the analogies and differences among CL and DS, hence looking for possible synergies and complementarities along 4 major knowledge-related dimensions, namely representation, acquisition (a.k.a. learning), inference (a.k.a. reasoning), and explanation. In this regard, we propose a conceptual framework through which bridges these disciplines can be described and designed. We then survey the current state of the art of AI technologies, w.r.t. their capability to support bridging CL and DS in practice. After detecting lacks and opportunities, we propose the notion of logic ecosystem as the new conceptual, architectural, and technological solution supporting the incremental integration of symbolic and sub-symbolic AI. Finally, we discuss how our notion of logic ecosys- tem can be reified into actual software technology and extended towards many DS-related directions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the last decades, Artificial Intelligence has witnessed multiple breakthroughs in deep learning. In particular, purely data-driven approaches have opened to a wide variety of successful applications due to the large availability of data. Nonetheless, the integration of prior knowledge is still required to compensate for specific issues like lack of generalization from limited data, fairness, robustness, and biases. In this thesis, we analyze the methodology of integrating knowledge into deep learning models in the field of Natural Language Processing (NLP). We start by remarking on the importance of knowledge integration. We highlight the possible shortcomings of these approaches and investigate the implications of integrating unstructured textual knowledge. We introduce Unstructured Knowledge Integration (UKI) as the process of integrating unstructured knowledge into machine learning models. We discuss UKI in the field of NLP, where knowledge is represented in a natural language format. We identify UKI as a complex process comprised of multiple sub-processes, different knowledge types, and knowledge integration properties to guarantee. We remark on the challenges of integrating unstructured textual knowledge and bridge connections with well-known research areas in NLP. We provide a unified vision of structured knowledge extraction (KE) and UKI by identifying KE as a sub-process of UKI. We investigate some challenging scenarios where structured knowledge is not a feasible prior assumption and formulate each task from the point of view of UKI. We adopt simple yet effective neural architectures and discuss the challenges of such an approach. Finally, we identify KE as a form of symbolic representation. From this perspective, we remark on the need of defining sophisticated UKI processes to verify the validity of knowledge integration. To this end, we foresee frameworks capable of combining symbolic and sub-symbolic representations for learning as a solution.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Time Series Analysis of multispectral satellite data offers an innovative way to extract valuable information of our changing planet. This is now a real option for scientists thanks to data availability as well as innovative cloud-computing platforms, such as Google Earth Engine. The integration of different missions would mitigate known issues in multispectral time series construction, such as gaps due to clouds or other atmospheric effects. With this purpose, harmonization among Landsat-like missions is possible through statistical analysis. This research offers an overview of the different instruments from Landsat and Sentinel missions (TM, ETM, OLI, OLI-2 and MSI sensors) and products levels (Collection-2 Level-1 and Surface Reflectance for Landsat and Level-1C and Level-2A for Sentinel-2). Moreover, a cross-sensors comparison was performed to assess the interoperability of the sensors on-board Landsat and Sentinel-2 constellations, having in mind a possible combined use for time series analysis. Firstly, more than 20,000 pairs of images almost simultaneously acquired all over Europe were selected over a period of several years. The study performed a cross-comparison analysis on these data, and provided an assessment of the calibration coefficients that can be used to minimize differences in the combined use. Four of the most popular vegetation indexes were selected for the study: NDVI, EVI, SAVI and NDMI. As a result, it is possible to reconstruct a longer and denser harmonized time series since 1984, useful for vegetation monitoring purposes. Secondly, the spectral characteristics of the recent Landsat-9 mission were assessed for a combined use with Landsat-8 and Sentinel-2. A cross-sensor analysis of common bands of more than 3,000 almost simultaneous acquisitions verified a high consistency between datasets. The most relevant discrepancy has been observed in the blue and SWIRS bands, often used in vegetation and water related studies. This analysis was supported with spectroradiometer ground measurements.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The purpose of this research study is to discuss privacy and data protection-related regulatory and compliance challenges posed by digital transformation in healthcare in the wake of the COVID-19 pandemic. The public health crisis accelerated the development of patient-centred remote/hybrid healthcare delivery models that make increased use of telehealth services and related digital solutions. The large-scale uptake of IoT-enabled medical devices and wellness applications, and the offering of healthcare services via healthcare platforms (online doctor marketplaces) have catalysed these developments. However, the use of new enabling technologies (IoT, AI) and the platformisation of healthcare pose complex challenges to the protection of patient’s privacy and personal data. This happens at a time when the EU is drawing up a new regulatory landscape for the use of data and digital technologies. Against this background, the study presents an interdisciplinary (normative and technology-oriented) critical assessment on how the new regulatory framework may affect privacy and data protection requirements regarding the deployment and use of Internet of Health Things (hardware) devices and interconnected software (AI systems). The study also assesses key privacy and data protection challenges that affect healthcare platforms (online doctor marketplaces) in their offering of video API-enabled teleconsultation services and their (anticipated) integration into the European Health Data Space. The overall conclusion of the study is that regulatory deficiencies may create integrity risks for the protection of privacy and personal data in telehealth due to uncertainties about the proper interplay, legal effects and effectiveness of (existing and proposed) EU legislation. The proliferation of normative measures may increase compliance costs, hinder innovation and ultimately, deprive European patients from state-of-the-art digital health technologies, which is paradoxically, the opposite of what the EU plans to achieve.